为了提高电力负荷预测的精度,应对单机运算资源不足的挑战,提出一种改进并行化粒子群算法优化的最小二乘支持向量机短期负荷预测模型。通过引入Spark on YARN内存计算平台,将改进并行粒子群优化(IPPSO)算法部署在平台上,对最小二乘支持...为了提高电力负荷预测的精度,应对单机运算资源不足的挑战,提出一种改进并行化粒子群算法优化的最小二乘支持向量机短期负荷预测模型。通过引入Spark on YARN内存计算平台,将改进并行粒子群优化(IPPSO)算法部署在平台上,对最小二乘支持向量机(LSSVM)的不确定参数进行算法优化,利用优化后的参数进行负荷预测。通过引入并行化和分布式的思想,提高算法预测准确率和处理海量高维数据的能力。采用EUNITE提供的真实负荷数据,在8节点的云计算集群上进行实验和分析,结果表明所提分布式电力负荷预测算法精度优于传统的泛化神经网络算法,在执行效率上优于基于Map Reduce的分布式在线序列优化学习机算法,且提出的算法具有较好的并行能力。展开更多
在基于人工免疫的入侵检测研究领域,一般都是应用随机产生字符串的方法来生成检测器。这种方法生成检测器的速度较慢,而且生成的检测器集的检测率低。由于非我样本中存在着关于非我空间的信息,提出通过应用非我样本来初始化基因库并应...在基于人工免疫的入侵检测研究领域,一般都是应用随机产生字符串的方法来生成检测器。这种方法生成检测器的速度较慢,而且生成的检测器集的检测率低。由于非我样本中存在着关于非我空间的信息,提出通过应用非我样本来初始化基因库并应用基因库来生成检测器的方法来检测入侵。应用KDD Cup 1999入侵检测数据集,通过实验证明该方法是有效的,能更快地生成检测率更高的检测器集。展开更多
文摘为了提高电力负荷预测的精度,应对单机运算资源不足的挑战,提出一种改进并行化粒子群算法优化的最小二乘支持向量机短期负荷预测模型。通过引入Spark on YARN内存计算平台,将改进并行粒子群优化(IPPSO)算法部署在平台上,对最小二乘支持向量机(LSSVM)的不确定参数进行算法优化,利用优化后的参数进行负荷预测。通过引入并行化和分布式的思想,提高算法预测准确率和处理海量高维数据的能力。采用EUNITE提供的真实负荷数据,在8节点的云计算集群上进行实验和分析,结果表明所提分布式电力负荷预测算法精度优于传统的泛化神经网络算法,在执行效率上优于基于Map Reduce的分布式在线序列优化学习机算法,且提出的算法具有较好的并行能力。
文摘在基于人工免疫的入侵检测研究领域,一般都是应用随机产生字符串的方法来生成检测器。这种方法生成检测器的速度较慢,而且生成的检测器集的检测率低。由于非我样本中存在着关于非我空间的信息,提出通过应用非我样本来初始化基因库并应用基因库来生成检测器的方法来检测入侵。应用KDD Cup 1999入侵检测数据集,通过实验证明该方法是有效的,能更快地生成检测率更高的检测器集。