为提高SO_4^(2-)/TiO_2固体超强酸的稳定性,向TiO_2载体中引入Ba制备成SO_4^(2-)/Ba-TiO_2复合固体超强酸,并采用X-射线粉末衍射(XRD)、比表面积分析(BET)、傅里叶变换红外光谱(FT-IR)、程序升温吸附氨脱附(NH3-TPD)等表征方法对其比表...为提高SO_4^(2-)/TiO_2固体超强酸的稳定性,向TiO_2载体中引入Ba制备成SO_4^(2-)/Ba-TiO_2复合固体超强酸,并采用X-射线粉末衍射(XRD)、比表面积分析(BET)、傅里叶变换红外光谱(FT-IR)、程序升温吸附氨脱附(NH3-TPD)等表征方法对其比表面积、晶相、硫质量分数、酸强度等进行分析。结果表明,Ba与TiO_2间会形成Ba Ti O3相,导致SO_4^(2-)/Ba-TiO_2固体超强酸的孔结构发生一定程度的坍塌;另外,FT-IR分析结果显示,在SO_4^(2-)/Ba-TiO_2固体超强酸中出现新的SO基团振动,说明形成了新的酸中心结构;而NH3-TPD结果表明,引入Ba并没有改变固体超强酸的酸强度和酸量。乙酸-正丁醇酯化反应结果显示,在103℃、酸醇摩尔比1∶1、催化剂用量0.5 g条件下,SO_4^(2-)/Ba-TiO_2的正丁醇转化率略低于SO_4^(2-)/TiO_2;但经过水预处理后,SO_4^(2-)/Ba-TiO_2呈现较高的正丁醇转化率,说明引入Ba在一定程度上提高了固体超强酸的稳定性。研究结果可为固体超强酸的工业化应用提供技术基础。展开更多
文摘为提高SO_4^(2-)/TiO_2固体超强酸的稳定性,向TiO_2载体中引入Ba制备成SO_4^(2-)/Ba-TiO_2复合固体超强酸,并采用X-射线粉末衍射(XRD)、比表面积分析(BET)、傅里叶变换红外光谱(FT-IR)、程序升温吸附氨脱附(NH3-TPD)等表征方法对其比表面积、晶相、硫质量分数、酸强度等进行分析。结果表明,Ba与TiO_2间会形成Ba Ti O3相,导致SO_4^(2-)/Ba-TiO_2固体超强酸的孔结构发生一定程度的坍塌;另外,FT-IR分析结果显示,在SO_4^(2-)/Ba-TiO_2固体超强酸中出现新的SO基团振动,说明形成了新的酸中心结构;而NH3-TPD结果表明,引入Ba并没有改变固体超强酸的酸强度和酸量。乙酸-正丁醇酯化反应结果显示,在103℃、酸醇摩尔比1∶1、催化剂用量0.5 g条件下,SO_4^(2-)/Ba-TiO_2的正丁醇转化率略低于SO_4^(2-)/TiO_2;但经过水预处理后,SO_4^(2-)/Ba-TiO_2呈现较高的正丁醇转化率,说明引入Ba在一定程度上提高了固体超强酸的稳定性。研究结果可为固体超强酸的工业化应用提供技术基础。