Glasses are known to possess low-frequency excess modes beyond the Debye prediction.For decades,it has been assumed that evolution of low-frequency density of excess modes D(ω) with frequency ω follows a power-law s...Glasses are known to possess low-frequency excess modes beyond the Debye prediction.For decades,it has been assumed that evolution of low-frequency density of excess modes D(ω) with frequency ω follows a power-law scaling:D(ω)~ω~γ.However,it remains debated on the value of γ at low frequencies below the first phonon-like mode in finitesize glasses.Early simulation studies reported γ=4 at low frequencies in two-(2D),three-(3D),and four-dimensional(4D)glasses,whereas recent observations in 2D and 3D glasses suggested γ=3.5 in a lower-frequency regime.It is uncertain whether the low-frequency scaling of D(ω)~ω^(3.5) could be generalized to 4D glasses.Here,we conduct numerical simulation studies of excess modes at frequencies below the first phonon-like mode in 4D model glasses.It is found that the system size dependence of D(ω) below the first phonon-like mode varies with spatial dimensions:D(ω) increases in2D glasses but decreases in 3D and 4D glasses as the system size increases.Furthermore,we demonstrate that the ω^(3.5)scaling,rather than the ω~4 scaling,works in the lowest-frequency regime accessed in 4D glasses,regardless of interaction potentials and system sizes examined.Therefore,our findings in 4D glasses,combined with previous results in 2D and 3D glasses,suggest a common low-frequency scaling of D(ω)~ ω^3.5) below the first phonon-like mode across different spatial dimensions,which would inspire further theoretical studies.展开更多
One hallmark of glasses is the existence of excess vibrational modes at low frequenciesωbeyond Debye’s prediction.Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight i...One hallmark of glasses is the existence of excess vibrational modes at low frequenciesωbeyond Debye’s prediction.Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight into the anomalous mechanical and thermodynamic properties of glasses.However,there is still intensive debate as to the frequency dependence of the population of low-frequency excess vibrations.In particular,excess modes could hybridize with phonon-like modes and the density of hybridized excess modes has been reported to follow D_(exc)(ω)~ω^(2)in 2D glasses with an inverse power law potential.Yet,the universality of the quadratic scaling remains unknown,since recent work suggested that interaction potentials could influence the scaling of the vibrational spectrum.Here,we extend the universality of the quadratic scaling for hybridized excess modes in 2D to glasses with potentials ranging from the purely repulsive soft-core interaction to the hard-core one with both repulsion and attraction as well as to glasses with significant differences in density or interparticle repulsion.Moreover,we observe that the number of hybridized excess modes exhibits a decrease in glasses with higher density or steeper interparticle repulsion,which is accompanied by a suppression of the strength of the sound attenuation.Our results indicate that the density bears some resemblance to the repulsive steepness of the interaction in influencing low-frequency properties.展开更多
We investigate systematically the effects of the inter-particle attraction on the structure and dynamical behaviors of glass-forming liquids via molecular dynamics simulations.We find that the inter-particle attractio...We investigate systematically the effects of the inter-particle attraction on the structure and dynamical behaviors of glass-forming liquids via molecular dynamics simulations.We find that the inter-particle attraction does not influence the structure,but greatly affects the dynamics and dynamical heterogeneity of the system.After the system changes from a purely repulsive glass-forming liquid to an attractive one,the dynamics slows down and the dynamical heterogeneity becomes greater,which is found interestingly to be associated with larger cooperative rearrangement regions(CRRs).Additionally,the structures of CRRs are observed to be compact in attractive glass-forming liquids but string-like in purely repulsive ones.Our findings constitute an important contribution to the ongoing study of the role of attractions in properties of glasses and glass-forming liquids.展开更多
基金the support from the National Natural Science Foundation of China(Grant Nos.12374202 and 12004001)Anhui Projects(Grant Nos.2022AH020009,S020218016,and Z010118169)Hefei City(Grant No.Z020132009)。
文摘Glasses are known to possess low-frequency excess modes beyond the Debye prediction.For decades,it has been assumed that evolution of low-frequency density of excess modes D(ω) with frequency ω follows a power-law scaling:D(ω)~ω~γ.However,it remains debated on the value of γ at low frequencies below the first phonon-like mode in finitesize glasses.Early simulation studies reported γ=4 at low frequencies in two-(2D),three-(3D),and four-dimensional(4D)glasses,whereas recent observations in 2D and 3D glasses suggested γ=3.5 in a lower-frequency regime.It is uncertain whether the low-frequency scaling of D(ω)~ω^(3.5) could be generalized to 4D glasses.Here,we conduct numerical simulation studies of excess modes at frequencies below the first phonon-like mode in 4D model glasses.It is found that the system size dependence of D(ω) below the first phonon-like mode varies with spatial dimensions:D(ω) increases in2D glasses but decreases in 3D and 4D glasses as the system size increases.Furthermore,we demonstrate that the ω^(3.5)scaling,rather than the ω~4 scaling,works in the lowest-frequency regime accessed in 4D glasses,regardless of interaction potentials and system sizes examined.Therefore,our findings in 4D glasses,combined with previous results in 2D and 3D glasses,suggest a common low-frequency scaling of D(ω)~ ω^3.5) below the first phonon-like mode across different spatial dimensions,which would inspire further theoretical studies.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12374202 and 12004001)Anhui Projects(Grant Nos.2022AH020009,S020218016,and Z010118169)+1 种基金Hefei City(Grant No.Z020132009)Anhui University(start-up fund)。
文摘One hallmark of glasses is the existence of excess vibrational modes at low frequenciesωbeyond Debye’s prediction.Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight into the anomalous mechanical and thermodynamic properties of glasses.However,there is still intensive debate as to the frequency dependence of the population of low-frequency excess vibrations.In particular,excess modes could hybridize with phonon-like modes and the density of hybridized excess modes has been reported to follow D_(exc)(ω)~ω^(2)in 2D glasses with an inverse power law potential.Yet,the universality of the quadratic scaling remains unknown,since recent work suggested that interaction potentials could influence the scaling of the vibrational spectrum.Here,we extend the universality of the quadratic scaling for hybridized excess modes in 2D to glasses with potentials ranging from the purely repulsive soft-core interaction to the hard-core one with both repulsion and attraction as well as to glasses with significant differences in density or interparticle repulsion.Moreover,we observe that the number of hybridized excess modes exhibits a decrease in glasses with higher density or steeper interparticle repulsion,which is accompanied by a suppression of the strength of the sound attenuation.Our results indicate that the density bears some resemblance to the repulsive steepness of the interaction in influencing low-frequency properties.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11704270,12074275,and 11574222)Jiangsu Planned Projects for Postdoctoral Research Funds+1 种基金the PAPD Program of Jiangsu Higher Education Institutionsthe Start-up Fund from Anhui University (Grant No. S020318001/02)
文摘We investigate systematically the effects of the inter-particle attraction on the structure and dynamical behaviors of glass-forming liquids via molecular dynamics simulations.We find that the inter-particle attraction does not influence the structure,but greatly affects the dynamics and dynamical heterogeneity of the system.After the system changes from a purely repulsive glass-forming liquid to an attractive one,the dynamics slows down and the dynamical heterogeneity becomes greater,which is found interestingly to be associated with larger cooperative rearrangement regions(CRRs).Additionally,the structures of CRRs are observed to be compact in attractive glass-forming liquids but string-like in purely repulsive ones.Our findings constitute an important contribution to the ongoing study of the role of attractions in properties of glasses and glass-forming liquids.