Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall er...Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall erosion model are employed to analyze the plume divergence angle and wall erosion rate,while a Farady probe measurement and laser profilometry system are set up to verify the simulation results.The results demonstrate that the genetic algorithm contributes to reducing the divergence angle of the thruster plumes and alleviating the impact of high-energy particles on the discharge channel wall,reducing the erosion by 5.5%and 2.7%,respectively.Further analysis indicates that the change from a divergent magnetic field to a convergent magnetic field,combined with the upstream shift of the ionization region,contributes to the improving the operation of the Hall thruster.展开更多
The common propellants used for electric thrusters, such as xenon and krypton, are rare, expensive,and difficult to acquire. Solid iodine attracts much attention with the advantages of low cost,extensive availability,...The common propellants used for electric thrusters, such as xenon and krypton, are rare, expensive,and difficult to acquire. Solid iodine attracts much attention with the advantages of low cost,extensive availability, low vapor pressure, and ionization potential. The performance of a lowpower iodine-fed Hall thruster matched with a xenon-fed cathode is investigated across a broad range of operation conditions. Regulation of the iodine vapor's mass flow rates is stably achieved by using a temperature control method of the iodine reservoir. The thrust measurements are finished utilizing a thrust target during the tests. Results show that thrust and anode-specific impulse increase approximately linearly with the increasing iodine mass flow rate.At the nominal power of 200 W class, iodine mass flow rates are 0.62 and 0.93 mg/s, thrusts are7.19 and 7.58 m N, anode specific impulses are 1184 and 826 s, anode efficiencies are 20.8%and 14.5%, and thrust to power ratios are 35.9 and 37.9 m N/k W under the conditions of 250 V,0.8 A and 200 V, 1.0 A, respectively. The operating characteristics of iodine-fed Hall thruster are analyzed in different states. Further work on the measurements of plasma characteristics and experimental optimization will be carried out.展开更多
基金funded by Shanghai Natural Science Foundation(No.12ZR1414700)。
文摘Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall erosion model are employed to analyze the plume divergence angle and wall erosion rate,while a Farady probe measurement and laser profilometry system are set up to verify the simulation results.The results demonstrate that the genetic algorithm contributes to reducing the divergence angle of the thruster plumes and alleviating the impact of high-energy particles on the discharge channel wall,reducing the erosion by 5.5%and 2.7%,respectively.Further analysis indicates that the change from a divergent magnetic field to a convergent magnetic field,combined with the upstream shift of the ionization region,contributes to the improving the operation of the Hall thruster.
基金supported by Joint Fund for Equipment Preresearch and Aerospace Science and Technology (No. 6141B061203)。
文摘The common propellants used for electric thrusters, such as xenon and krypton, are rare, expensive,and difficult to acquire. Solid iodine attracts much attention with the advantages of low cost,extensive availability, low vapor pressure, and ionization potential. The performance of a lowpower iodine-fed Hall thruster matched with a xenon-fed cathode is investigated across a broad range of operation conditions. Regulation of the iodine vapor's mass flow rates is stably achieved by using a temperature control method of the iodine reservoir. The thrust measurements are finished utilizing a thrust target during the tests. Results show that thrust and anode-specific impulse increase approximately linearly with the increasing iodine mass flow rate.At the nominal power of 200 W class, iodine mass flow rates are 0.62 and 0.93 mg/s, thrusts are7.19 and 7.58 m N, anode specific impulses are 1184 and 826 s, anode efficiencies are 20.8%and 14.5%, and thrust to power ratios are 35.9 and 37.9 m N/k W under the conditions of 250 V,0.8 A and 200 V, 1.0 A, respectively. The operating characteristics of iodine-fed Hall thruster are analyzed in different states. Further work on the measurements of plasma characteristics and experimental optimization will be carried out.