针对常规方法对于气体绝缘金属封闭开关设备(Gas Insulated Switchgear,GIS)机械缺陷的特征识别稳定性差、识别率低的问题,在图谱理论的基础上,提出一种基于图谱功率谱熵和最大均值差异(Maximum Mean Discrepancy,MMD)的GIS机械状态辨...针对常规方法对于气体绝缘金属封闭开关设备(Gas Insulated Switchgear,GIS)机械缺陷的特征识别稳定性差、识别率低的问题,在图谱理论的基础上,提出一种基于图谱功率谱熵和最大均值差异(Maximum Mean Discrepancy,MMD)的GIS机械状态辨识方法。首先将采集得到的GIS振动信号转化为图信号,并利用图傅里叶变换技术变换至图谱域进行分析处理;然后提取图谱功率谱熵作为表征GIS不同状态的特征参数;最后利用MMD距离判别函数实现GIS不同工况下的状态辨识。实验结果表明:在噪声干扰的情况下,所提方法能够有效提取GIS不同状态下的特征参数,并成功区分出屏蔽罩松动及内部异物缺陷,状态辨识精度高达93.89%,较常规方法有明显提高。展开更多
文摘针对常规方法对于气体绝缘金属封闭开关设备(Gas Insulated Switchgear,GIS)机械缺陷的特征识别稳定性差、识别率低的问题,在图谱理论的基础上,提出一种基于图谱功率谱熵和最大均值差异(Maximum Mean Discrepancy,MMD)的GIS机械状态辨识方法。首先将采集得到的GIS振动信号转化为图信号,并利用图傅里叶变换技术变换至图谱域进行分析处理;然后提取图谱功率谱熵作为表征GIS不同状态的特征参数;最后利用MMD距离判别函数实现GIS不同工况下的状态辨识。实验结果表明:在噪声干扰的情况下,所提方法能够有效提取GIS不同状态下的特征参数,并成功区分出屏蔽罩松动及内部异物缺陷,状态辨识精度高达93.89%,较常规方法有明显提高。