针对物理模型抗噪能力差且容易过拟合的问题,提出一种PROSAIL模型结合VMG(VARI(Visible atmospherically resistant index)、MGRVI(Modified green red vegetation index)、GRRI(Green red ratio index))多元回归模型反演冬小麦叶面积指...针对物理模型抗噪能力差且容易过拟合的问题,提出一种PROSAIL模型结合VMG(VARI(Visible atmospherically resistant index)、MGRVI(Modified green red vegetation index)、GRRI(Green red ratio index))多元回归模型反演冬小麦叶面积指数(Leaf area index,LAI)方法。实验基于无人机影像(Unmanned aerial vehicles,UAV),选择河南省焦作市东南部的山阳区为实验区,结合实测2个生育期冬小麦LAI数据。首先,构建RGB植被指数模型,选取其中最优VMG模型反演冬小麦LAI;然后,对PROSAIL参数敏感性进行分析,得到参数最优值,反演冬小麦LAI;最后,采用快速模拟退火(Very fast simulated annealing,VFSA)算法将两种模型结合,获得最优冬小麦LAI。结果表明:VFSA可以有效将PROSAIL模型和VMG模型结合,提高了反演精度,且优于VMG模型和PROSAIL模型,决定系数R^(2)高于0.8,均方根误差(RMSE)低于0.4 m^(2)/m^(2)。综上所述,冬小麦生长过程中,地面覆盖度增高,本文方法具有较强的辐射传输机理,为LAI反演提供一种有效的反演方法。展开更多
针对R-cut(Ratio cut)边缘检测分割模型对高分辨率遥感影像分割时存在过分割和模糊边缘敏感性问题,提出了一种多尺度R-cut(Multi-scale ratio cut,MSR-cut)的遥感影像边缘检测分割方法。首先,采用形态重建的分水岭分割算法对影像过分割...针对R-cut(Ratio cut)边缘检测分割模型对高分辨率遥感影像分割时存在过分割和模糊边缘敏感性问题,提出了一种多尺度R-cut(Multi-scale ratio cut,MSR-cut)的遥感影像边缘检测分割方法。首先,采用形态重建的分水岭分割算法对影像过分割,形成多个超像素区域;然后计算并提取影像各个区域的纹理特征信息熵值、光谱特征与邻域均值差分归一化值,分别进行同质性和异质性的有效衡量;并构建评价函数获取最优分割尺度,对这些超像素区域进行初步合并,得到影像的粗分割结果;最后结合各地物的边界权重信息,从全局角度用R-cut的方法对粗分割结果进一步合并,完成对影像的精细分割,生成最终的分割结果。实验选取5个不同场景的高分辨率遥感影像,采用定性和定量两种方法对比分析本文方法与传统R-cut边缘检测分割、Spectral-Rcut边缘检测分割和Textured-Rcut边缘检测分割方法。实验结果表明,MSR-cut边缘检测分割方法能够有效提高分割精度,增强噪声鲁棒性,可取得较好的分割视觉效果。展开更多
烟草是一种特殊农作物,烟草的提取对其信息统计起着重要作用。针对烟草单株提取难的问题,提出了一种结合多特征和超像素的无人机影像烟草精细提取方法。首先利用简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)算法对影像...烟草是一种特殊农作物,烟草的提取对其信息统计起着重要作用。针对烟草单株提取难的问题,提出了一种结合多特征和超像素的无人机影像烟草精细提取方法。首先利用简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)算法对影像进行超像素分割;然后统计超像素的平均值、亮度、长宽比、形状指数、红绿蓝波段值和自定义植被指数;接着通过对超像素特征组合和特征阈值选取来实现烟草的精细提取;最后对提取信息进行统计和分析。实验结果表明:该方法能有效地提取烟草株树,准确度分别为99%和98.6%。利用该方法,在计算烟草产量方面供了有效参考,节省了大部分的人力财力。展开更多
文摘针对物理模型抗噪能力差且容易过拟合的问题,提出一种PROSAIL模型结合VMG(VARI(Visible atmospherically resistant index)、MGRVI(Modified green red vegetation index)、GRRI(Green red ratio index))多元回归模型反演冬小麦叶面积指数(Leaf area index,LAI)方法。实验基于无人机影像(Unmanned aerial vehicles,UAV),选择河南省焦作市东南部的山阳区为实验区,结合实测2个生育期冬小麦LAI数据。首先,构建RGB植被指数模型,选取其中最优VMG模型反演冬小麦LAI;然后,对PROSAIL参数敏感性进行分析,得到参数最优值,反演冬小麦LAI;最后,采用快速模拟退火(Very fast simulated annealing,VFSA)算法将两种模型结合,获得最优冬小麦LAI。结果表明:VFSA可以有效将PROSAIL模型和VMG模型结合,提高了反演精度,且优于VMG模型和PROSAIL模型,决定系数R^(2)高于0.8,均方根误差(RMSE)低于0.4 m^(2)/m^(2)。综上所述,冬小麦生长过程中,地面覆盖度增高,本文方法具有较强的辐射传输机理,为LAI反演提供一种有效的反演方法。
文摘针对R-cut(Ratio cut)边缘检测分割模型对高分辨率遥感影像分割时存在过分割和模糊边缘敏感性问题,提出了一种多尺度R-cut(Multi-scale ratio cut,MSR-cut)的遥感影像边缘检测分割方法。首先,采用形态重建的分水岭分割算法对影像过分割,形成多个超像素区域;然后计算并提取影像各个区域的纹理特征信息熵值、光谱特征与邻域均值差分归一化值,分别进行同质性和异质性的有效衡量;并构建评价函数获取最优分割尺度,对这些超像素区域进行初步合并,得到影像的粗分割结果;最后结合各地物的边界权重信息,从全局角度用R-cut的方法对粗分割结果进一步合并,完成对影像的精细分割,生成最终的分割结果。实验选取5个不同场景的高分辨率遥感影像,采用定性和定量两种方法对比分析本文方法与传统R-cut边缘检测分割、Spectral-Rcut边缘检测分割和Textured-Rcut边缘检测分割方法。实验结果表明,MSR-cut边缘检测分割方法能够有效提高分割精度,增强噪声鲁棒性,可取得较好的分割视觉效果。
文摘烟草是一种特殊农作物,烟草的提取对其信息统计起着重要作用。针对烟草单株提取难的问题,提出了一种结合多特征和超像素的无人机影像烟草精细提取方法。首先利用简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)算法对影像进行超像素分割;然后统计超像素的平均值、亮度、长宽比、形状指数、红绿蓝波段值和自定义植被指数;接着通过对超像素特征组合和特征阈值选取来实现烟草的精细提取;最后对提取信息进行统计和分析。实验结果表明:该方法能有效地提取烟草株树,准确度分别为99%和98.6%。利用该方法,在计算烟草产量方面供了有效参考,节省了大部分的人力财力。