We investigate the performances of the near-ultraviolet(about 350 nm-360 nm) light-emitting diodes(LEDs) each with specifically designed irregular sawtooth electron blocking layer(EBL) by using the APSYS simulat...We investigate the performances of the near-ultraviolet(about 350 nm-360 nm) light-emitting diodes(LEDs) each with specifically designed irregular sawtooth electron blocking layer(EBL) by using the APSYS simulation program.The internal quantum efficiencies(IQEs),light output powers,carrier concentrations in the quantum wells,energy-band diagrams,and electrostatic fields are analyzed carefully.The results indicate that the LEDs with composition-graded pAlxGa1-xN irregular sawtooth EBLs have better performances than their counterparts with stationary component p-AlGaN EBLs.The improvements can be attributed to the improved polarization field in EBL and active region as well as the alleviation of band bending in the EBL/p-AlGaN interface,which results in less electron leakage and better hole injection efficiency,thus reducing efficiency droop and enhancing the radiative recombination rate.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11474105 and 51172079)the Science and Technology Program of Guangdong Province,China(Grant Nos.2015B090903078 and 2015B010105011)+2 种基金the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT13064)the Science and Technology Project of Guangzhou City,China(Grant No.201607010246)the Science and Technology Planning Project of Guangdong Province,China(Grant No.2015A010105025)
文摘We investigate the performances of the near-ultraviolet(about 350 nm-360 nm) light-emitting diodes(LEDs) each with specifically designed irregular sawtooth electron blocking layer(EBL) by using the APSYS simulation program.The internal quantum efficiencies(IQEs),light output powers,carrier concentrations in the quantum wells,energy-band diagrams,and electrostatic fields are analyzed carefully.The results indicate that the LEDs with composition-graded pAlxGa1-xN irregular sawtooth EBLs have better performances than their counterparts with stationary component p-AlGaN EBLs.The improvements can be attributed to the improved polarization field in EBL and active region as well as the alleviation of band bending in the EBL/p-AlGaN interface,which results in less electron leakage and better hole injection efficiency,thus reducing efficiency droop and enhancing the radiative recombination rate.