基于物联大数据赋能的业务流程能够更快更准地感知物理世界并及时做出响应的需求突现,提出一种物联网(Internet of Things,IoT)感知的业务微流程建模方法。首先,以单个IoT对象为中心建模,融合MAPE-K(monitor,analysis,plan,execution an...基于物联大数据赋能的业务流程能够更快更准地感知物理世界并及时做出响应的需求突现,提出一种物联网(Internet of Things,IoT)感知的业务微流程建模方法。首先,以单个IoT对象为中心建模,融合MAPE-K(monitor,analysis,plan,execution and knowledge base,MAPE-K)模型思想,将IoT对象实例生命周期的行为状态与微流程实例状态一一映射,实现对单个IoT对象的环形自动监控和调节;其次,基于从IoT传感设备获取的数据,定义基于SASE+语言的业务规则,提取对业务流程有意义的业务事件,避免了无关事件对宏流程的干扰;最后,通过设计一个微流程建模工具原型系统,结合真实案例分析,验证了提出建模方法的有效性,实现了业务流程与IoT实时流式感知数据的结合,并显著减少了宏流程需要处理的业务事件数量。展开更多
Nonpolar(1120)plane In_(x)Ga_(1-x)N epilayers comprising the entire In content(x)range were successfully grown on nanoscale Ga N islands by metal-organic chemical vapor deposition.The structural and optical properties...Nonpolar(1120)plane In_(x)Ga_(1-x)N epilayers comprising the entire In content(x)range were successfully grown on nanoscale Ga N islands by metal-organic chemical vapor deposition.The structural and optical properties were studied intensively.It was found that the surface morphology was gradually smoothed when x increased from 0.06 to 0.33,even though the crystalline quality was gradually declined,which was accompanied by the appearance of phase separation in the In_(x)Ga_(1-x)N layer.Photoluminescence wavelengths of 478 and 674 nm for blue and red light were achieved for x varied from 0.06 to 0.33.Furthermore,the corresponding average lifetime(τ_(1/e))of carriers for the nonpolar In Ga N film was decreased from 406 ps to 267 ps,indicating that a high-speed modulation bandwidth can be expected for nonpolar In Ga N-based light-emitting diodes.Moreover,the bowing coefficient(b)of the(1120)plane In Ga N was determined to be 1.91 e V for the bandgap energy as a function of x.展开更多
Using an identical monolithic InGaN/GaN light emitting diode (LED) array as the sensing module and a well-designed data processing module, we demonstrate a small-size concentration sensing prototype. Overlap between t...Using an identical monolithic InGaN/GaN light emitting diode (LED) array as the sensing module and a well-designed data processing module, we demonstrate a small-size concentration sensing prototype. Overlap between the emission and the response spectra of the InGaN/GaN LED makes each pair of LEDs in the arrayed chip form a sensing channel. The changes in liquid concentration can be transformed into variation of photocurrent. The system's sensing properties are further optimized by varying the position, number of receivers, and packaging reflectors. With methyl orange as a tracer agent, the sensing system's resolution is 0.286 μmol/L with a linear measurement region below 40 μmol/L.展开更多
文摘基于物联大数据赋能的业务流程能够更快更准地感知物理世界并及时做出响应的需求突现,提出一种物联网(Internet of Things,IoT)感知的业务微流程建模方法。首先,以单个IoT对象为中心建模,融合MAPE-K(monitor,analysis,plan,execution and knowledge base,MAPE-K)模型思想,将IoT对象实例生命周期的行为状态与微流程实例状态一一映射,实现对单个IoT对象的环形自动监控和调节;其次,基于从IoT传感设备获取的数据,定义基于SASE+语言的业务规则,提取对业务流程有意义的业务事件,避免了无关事件对宏流程的干扰;最后,通过设计一个微流程建模工具原型系统,结合真实案例分析,验证了提出建模方法的有效性,实现了业务流程与IoT实时流式感知数据的结合,并显著减少了宏流程需要处理的业务事件数量。
基金supported by the National Natural Science Foundation of China(Grant Nos.62074077,61921005,61974062,and 61904082)the China Postdoctoral Science Foundation(Grant No.2020M671441)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant Nos.19KJB510006 and 19KJB510039)the Natural Science Foundation of Jiangsu Province(Grant No.BK20190765)。
文摘Nonpolar(1120)plane In_(x)Ga_(1-x)N epilayers comprising the entire In content(x)range were successfully grown on nanoscale Ga N islands by metal-organic chemical vapor deposition.The structural and optical properties were studied intensively.It was found that the surface morphology was gradually smoothed when x increased from 0.06 to 0.33,even though the crystalline quality was gradually declined,which was accompanied by the appearance of phase separation in the In_(x)Ga_(1-x)N layer.Photoluminescence wavelengths of 478 and 674 nm for blue and red light were achieved for x varied from 0.06 to 0.33.Furthermore,the corresponding average lifetime(τ_(1/e))of carriers for the nonpolar In Ga N film was decreased from 406 ps to 267 ps,indicating that a high-speed modulation bandwidth can be expected for nonpolar In Ga N-based light-emitting diodes.Moreover,the bowing coefficient(b)of the(1120)plane In Ga N was determined to be 1.91 e V for the bandgap energy as a function of x.
基金supported by the Natural Science Foundation of Jiangsu Province (Nos.BK20210593 and BK20231441)the National Natural Science Foundation of China (No.62204127)the Fundamental Research Funds for the Central Universities (No.NS2022096)。
文摘Using an identical monolithic InGaN/GaN light emitting diode (LED) array as the sensing module and a well-designed data processing module, we demonstrate a small-size concentration sensing prototype. Overlap between the emission and the response spectra of the InGaN/GaN LED makes each pair of LEDs in the arrayed chip form a sensing channel. The changes in liquid concentration can be transformed into variation of photocurrent. The system's sensing properties are further optimized by varying the position, number of receivers, and packaging reflectors. With methyl orange as a tracer agent, the sensing system's resolution is 0.286 μmol/L with a linear measurement region below 40 μmol/L.