作为钠离子电池正极材料,锰基层状氧化物具有理论储钠容量高、成本低和热稳定性高等优点,但也存在因结构畸变、Na^(+)/空位有序以及过渡金属空位等带来的循环稳定性问题。研究表明,抑制过渡金属空位可有效提升锰基层状氧化物正极的电化...作为钠离子电池正极材料,锰基层状氧化物具有理论储钠容量高、成本低和热稳定性高等优点,但也存在因结构畸变、Na^(+)/空位有序以及过渡金属空位等带来的循环稳定性问题。研究表明,抑制过渡金属空位可有效提升锰基层状氧化物正极的电化学性能。为此,本工作对比研究了溶胶凝胶制备过程中高温淬火对Na_(0.67)Fe1/3Co_(1/3)Mn_(1/3)O_(2)(NFCMO)结构和性能的影响。结果表明,相比于未经高温淬火处理的NFCMO,高温液氮淬火合成的NFCMO-LN具有更高的比容量和倍率性能。NFCMO和NFCMO-LN在0.1C下的初始放电比容量分别为91.1 m Ah/g和129.8 m Ah/g;1C倍率下循环100周后的容量保留率分别为100%和90%。即使在10C的高倍率下,NFCMO-LN仍能提供56.2 m Ah/g的放电比容量。结构分析表明,高温液氮淬火能有效抑制过渡金属空位的产生,提升了材料的结构稳定性。研究结果为钠离子电池正极材料的结构设计和电化学性能优化提供了一种可行的技术途径。展开更多
文摘作为钠离子电池正极材料,锰基层状氧化物具有理论储钠容量高、成本低和热稳定性高等优点,但也存在因结构畸变、Na^(+)/空位有序以及过渡金属空位等带来的循环稳定性问题。研究表明,抑制过渡金属空位可有效提升锰基层状氧化物正极的电化学性能。为此,本工作对比研究了溶胶凝胶制备过程中高温淬火对Na_(0.67)Fe1/3Co_(1/3)Mn_(1/3)O_(2)(NFCMO)结构和性能的影响。结果表明,相比于未经高温淬火处理的NFCMO,高温液氮淬火合成的NFCMO-LN具有更高的比容量和倍率性能。NFCMO和NFCMO-LN在0.1C下的初始放电比容量分别为91.1 m Ah/g和129.8 m Ah/g;1C倍率下循环100周后的容量保留率分别为100%和90%。即使在10C的高倍率下,NFCMO-LN仍能提供56.2 m Ah/g的放电比容量。结构分析表明,高温液氮淬火能有效抑制过渡金属空位的产生,提升了材料的结构稳定性。研究结果为钠离子电池正极材料的结构设计和电化学性能优化提供了一种可行的技术途径。