实时、准确地获得电池模型的参数可提高电池状态估计的精度。常用的系统辨识算法和智能优化算法不仅实时性差,而且辨识精度低。为了解决等效电路模型的参数辨识及提高等效电路模型参数的辨识精度,本文通过直接离散的方法建立了能够同时...实时、准确地获得电池模型的参数可提高电池状态估计的精度。常用的系统辨识算法和智能优化算法不仅实时性差,而且辨识精度低。为了解决等效电路模型的参数辨识及提高等效电路模型参数的辨识精度,本文通过直接离散的方法建立了能够同时辨识二阶RC(resistance-capacitance)等效电路模型和PNGV(partnership for a new generation of vehicles)模型参数的差分方程。基于多新息算法辨识理论,提出了带遗忘因子的多新息辅助模型扩展递推最小二乘(FMIAELS)算法。FMIAELS算法只需利用电池的电流及端电压即可实现等效电路模型参数的实时、精确辨识。实验验证结果表明,在不同温度、工况和老化程度下,FMIAELS算法可精确地辨识电池的模型参数,误差约为常用的系统辨识算法和智能优化算法的1/3。FMIAELS算法也能实现开路电压(OCV)的精确辨识,在不同脉冲下辨识的OCV的精度也明显优于常用的系统辨识算法和智能优化算法,其平均误差仅有0.22%。展开更多
Although the single-particle model enhanced with electrolyte dynamics(SPMe)is simplified from the pseudo-twodimensional(P2D)electrochemical model for lithium-ion batteries,it is difficult to solve the partial differen...Although the single-particle model enhanced with electrolyte dynamics(SPMe)is simplified from the pseudo-twodimensional(P2D)electrochemical model for lithium-ion batteries,it is difficult to solve the partial differential equations of solid–liquid phases in real-time applications.Moreover,working temperatures have a heavy impact on the battery behavior.Hence,a thermal-coupling SPMe is constructed.Herein,a lumped thermal model is established to estimate battery temperatures.The order of the SPMe model is reduced by using both transfer functions and truncation techniques and merged with Arrhenius equations for thermal effects.The polarization voltage drop is then modified through the use of test data because its original model is unreliable theoretically.Finally,the coupling-model parameters are extracted using genetic algorithms.Experimental results demonstrate that the proposed model produces average errors of about 42 mV under 15 constant current conditions and 15 mV under nine dynamic conditions,respectively.This new electrochemicalthermal coupling model is reliable and expected to be used for onboard applications.展开更多
文摘实时、准确地获得电池模型的参数可提高电池状态估计的精度。常用的系统辨识算法和智能优化算法不仅实时性差,而且辨识精度低。为了解决等效电路模型的参数辨识及提高等效电路模型参数的辨识精度,本文通过直接离散的方法建立了能够同时辨识二阶RC(resistance-capacitance)等效电路模型和PNGV(partnership for a new generation of vehicles)模型参数的差分方程。基于多新息算法辨识理论,提出了带遗忘因子的多新息辅助模型扩展递推最小二乘(FMIAELS)算法。FMIAELS算法只需利用电池的电流及端电压即可实现等效电路模型参数的实时、精确辨识。实验验证结果表明,在不同温度、工况和老化程度下,FMIAELS算法可精确地辨识电池的模型参数,误差约为常用的系统辨识算法和智能优化算法的1/3。FMIAELS算法也能实现开路电压(OCV)的精确辨识,在不同脉冲下辨识的OCV的精度也明显优于常用的系统辨识算法和智能优化算法,其平均误差仅有0.22%。
基金the financial support from the National Key Research and Development Program of China(Grant No.2021YFF0601101)。
文摘Although the single-particle model enhanced with electrolyte dynamics(SPMe)is simplified from the pseudo-twodimensional(P2D)electrochemical model for lithium-ion batteries,it is difficult to solve the partial differential equations of solid–liquid phases in real-time applications.Moreover,working temperatures have a heavy impact on the battery behavior.Hence,a thermal-coupling SPMe is constructed.Herein,a lumped thermal model is established to estimate battery temperatures.The order of the SPMe model is reduced by using both transfer functions and truncation techniques and merged with Arrhenius equations for thermal effects.The polarization voltage drop is then modified through the use of test data because its original model is unreliable theoretically.Finally,the coupling-model parameters are extracted using genetic algorithms.Experimental results demonstrate that the proposed model produces average errors of about 42 mV under 15 constant current conditions and 15 mV under nine dynamic conditions,respectively.This new electrochemicalthermal coupling model is reliable and expected to be used for onboard applications.