文章研究多服务器、多客户端联邦学习(federated learning,FL)场景中的激励机制,并将任务分配和定价问题建模为多个逆向拍卖问题。根据切比雪夫(Chebyshev)定理对客户端每一轮的本地模型性能进行评估,并进一步利用指数衰减函数评估其本...文章研究多服务器、多客户端联邦学习(federated learning,FL)场景中的激励机制,并将任务分配和定价问题建模为多个逆向拍卖问题。根据切比雪夫(Chebyshev)定理对客户端每一轮的本地模型性能进行评估,并进一步利用指数衰减函数评估其本地模型的总体性能;设计基于本地模型性能的逆向拍卖(local model performance based reverse auction,LPRA)算法解决任务分配和定价问题以激励更多高性能的客户端参与,并从理论上证明LPRA算法满足个体理性、真实性和计算高效性;通过仿真实验验证LPRA算法的有效性。展开更多
建立了交流稳压电源主电路数学模型并分析其闭环稳压控制原理。由于装置具有较强的非线性和变结构、变参数特性,采用经典PID控制器很难获得理想的控制效果。将人工神经网络与传统PID控制器相结合,构成一种不依赖于被控对象精确数学模型...建立了交流稳压电源主电路数学模型并分析其闭环稳压控制原理。由于装置具有较强的非线性和变结构、变参数特性,采用经典PID控制器很难获得理想的控制效果。将人工神经网络与传统PID控制器相结合,构成一种不依赖于被控对象精确数学模型的神经网络PID控制器。为了提高神经网络的收敛速度,采用Levenberg-Marquardt算法计算连接权值更新量,并对当前解施加一个以一定概率保留的随机扰动,加快迭代过程跳出局部极小点。对装置主电路和改进神经网络PID控制器进行仿真,结果表明:系统动态响应快,鲁棒性强,调节平滑,具有较好的控制效果。最后,制造并测试了额定电压660 V、容量400 k VA的实验样机,对理论研究进行了实验验证。展开更多
文摘文章研究多服务器、多客户端联邦学习(federated learning,FL)场景中的激励机制,并将任务分配和定价问题建模为多个逆向拍卖问题。根据切比雪夫(Chebyshev)定理对客户端每一轮的本地模型性能进行评估,并进一步利用指数衰减函数评估其本地模型的总体性能;设计基于本地模型性能的逆向拍卖(local model performance based reverse auction,LPRA)算法解决任务分配和定价问题以激励更多高性能的客户端参与,并从理论上证明LPRA算法满足个体理性、真实性和计算高效性;通过仿真实验验证LPRA算法的有效性。
文摘建立了交流稳压电源主电路数学模型并分析其闭环稳压控制原理。由于装置具有较强的非线性和变结构、变参数特性,采用经典PID控制器很难获得理想的控制效果。将人工神经网络与传统PID控制器相结合,构成一种不依赖于被控对象精确数学模型的神经网络PID控制器。为了提高神经网络的收敛速度,采用Levenberg-Marquardt算法计算连接权值更新量,并对当前解施加一个以一定概率保留的随机扰动,加快迭代过程跳出局部极小点。对装置主电路和改进神经网络PID控制器进行仿真,结果表明:系统动态响应快,鲁棒性强,调节平滑,具有较好的控制效果。最后,制造并测试了额定电压660 V、容量400 k VA的实验样机,对理论研究进行了实验验证。