本文以协同培养人工智能交叉学科高层次人才为出发点,将人工智能交叉学科研究生作为对象,通过对学科融合教育的危害分析和关键控制点(Hazard Analysis and Critical Control Points,HACCP)研究,推进跨学科资源有机整合,建立多学科联合...本文以协同培养人工智能交叉学科高层次人才为出发点,将人工智能交叉学科研究生作为对象,通过对学科融合教育的危害分析和关键控制点(Hazard Analysis and Critical Control Points,HACCP)研究,推进跨学科资源有机整合,建立多学科联合与协同的新型教师队伍,构建系统的、专通融合的课程体系,搭建前沿的人工智能实践与创新平台,深入实施产教融合、科教融合,真正实现交叉学科协同育人。展开更多
网络流量预测是网络拥塞控制与网络管理的一个重要问题.网络流量时间序列具有时变、非线性特征,导致传统时间序列预测方法预测精度比较低,无法建立精确的预测模型.回声状态网络(echo state network,ESN)在非线性混沌系统预测与建模方面...网络流量预测是网络拥塞控制与网络管理的一个重要问题.网络流量时间序列具有时变、非线性特征,导致传统时间序列预测方法预测精度比较低,无法建立精确的预测模型.回声状态网络(echo state network,ESN)在非线性混沌系统预测与建模方面有着良好的性能,非常适合网络流量的预测.为了提高网络流量的预测精度,提出一种基于遗传算法(genetic algorithm,GA)优化回声状态网络的网络流量非线性预测方法.首先利用回声状态网络对网络流量进行预测;然后利用遗传算法对回声状态网络预测模型中的储备池参数进行优化,提高预测模型的预测精度.通过中国联合网络通信公司辽宁分公司采集的实际网络流量数据进行了仿真验证.与差分自回归滑动平均模型(auto regressive integrated moving average,ARIMA)、Elman神经网络以及最小二乘支持向量机(least square support vector machine,LSSVM)这3种常见预测模型进行了对比,仿真结果表明提出的方法具有更高的预测精度与更小的预测误差,更能刻画网络流量复杂的变化特点.展开更多
针对网络控制系统中随机时延很难精确预测的问题,首次将核主成分分析(kernel principal compo-nent analysis,KPCA)与最小二乘支持向量机(least squares support vector machine,LSSVM)结合对随机时延进行预测,KPCA对输入随机时延序列降...针对网络控制系统中随机时延很难精确预测的问题,首次将核主成分分析(kernel principal compo-nent analysis,KPCA)与最小二乘支持向量机(least squares support vector machine,LSSVM)结合对随机时延进行预测,KPCA对输入随机时延序列降维,消除重复性与噪声,减少LSSVM的运算量,降维后的时延序列通过LSSVM算法预测时延值。仿真结果表明,基于KPCA与LSSVM的时延预测方法的预测精度高于其他的预测方法。展开更多
针对网络控制系统(networked control system,NCS)中随机时延导致系统性能下降的问题,利用粒子群优化(particle swarm optimization,PSO)的最小二乘支持向量机(least square support vector machine,LSSVM)建立NCS中随机时延预测模型,...针对网络控制系统(networked control system,NCS)中随机时延导致系统性能下降的问题,利用粒子群优化(particle swarm optimization,PSO)的最小二乘支持向量机(least square support vector machine,LSSVM)建立NCS中随机时延预测模型,精确预测未来时刻的时延;同时利用该预测算法预测的时延通过快速隐式广义预测控制算法对NCS随机时延进行补偿。仿真结果表明,PSO优化的LS-SVM算法对随机时延具有较高的预测精度,同时快速隐式广义预测控制算法可使系统的输出很好地跟踪参考轨迹,保证系统良好的控制效果。展开更多
文摘本文以协同培养人工智能交叉学科高层次人才为出发点,将人工智能交叉学科研究生作为对象,通过对学科融合教育的危害分析和关键控制点(Hazard Analysis and Critical Control Points,HACCP)研究,推进跨学科资源有机整合,建立多学科联合与协同的新型教师队伍,构建系统的、专通融合的课程体系,搭建前沿的人工智能实践与创新平台,深入实施产教融合、科教融合,真正实现交叉学科协同育人。
文摘针对网络控制系统中随机时延很难精确预测的问题,首次将核主成分分析(kernel principal compo-nent analysis,KPCA)与最小二乘支持向量机(least squares support vector machine,LSSVM)结合对随机时延进行预测,KPCA对输入随机时延序列降维,消除重复性与噪声,减少LSSVM的运算量,降维后的时延序列通过LSSVM算法预测时延值。仿真结果表明,基于KPCA与LSSVM的时延预测方法的预测精度高于其他的预测方法。
文摘针对网络控制系统(networked control system,NCS)中随机时延导致系统性能下降的问题,利用粒子群优化(particle swarm optimization,PSO)的最小二乘支持向量机(least square support vector machine,LSSVM)建立NCS中随机时延预测模型,精确预测未来时刻的时延;同时利用该预测算法预测的时延通过快速隐式广义预测控制算法对NCS随机时延进行补偿。仿真结果表明,PSO优化的LS-SVM算法对随机时延具有较高的预测精度,同时快速隐式广义预测控制算法可使系统的输出很好地跟踪参考轨迹,保证系统良好的控制效果。