以提高径向基函数神经网络(radial basis function neural network,RBFNN)的分类能力为出发点,把衰减半径聚类的思想与误差平方和准则结合起来,提出了RBFNN三阶段学习算法。该算法先利用动态衰减半径聚类确定隐节点的初始结构,再由误差...以提高径向基函数神经网络(radial basis function neural network,RBFNN)的分类能力为出发点,把衰减半径聚类的思想与误差平方和准则结合起来,提出了RBFNN三阶段学习算法。该算法先利用动态衰减半径聚类确定隐节点的初始结构,再由误差平方和准则进行中心点微调,并用类内类间距确定径基宽度,最后采用伪逆法训练隐层与输出层间的连接权重。给出了算法的具体步骤,并通过Iris和WINES数据集的仿真实验,证明该算法确实具有较强的分类能力。展开更多
文摘以提高径向基函数神经网络(radial basis function neural network,RBFNN)的分类能力为出发点,把衰减半径聚类的思想与误差平方和准则结合起来,提出了RBFNN三阶段学习算法。该算法先利用动态衰减半径聚类确定隐节点的初始结构,再由误差平方和准则进行中心点微调,并用类内类间距确定径基宽度,最后采用伪逆法训练隐层与输出层间的连接权重。给出了算法的具体步骤,并通过Iris和WINES数据集的仿真实验,证明该算法确实具有较强的分类能力。