Quantum dialogue(QD)enables two communication parties to directly exchange secret messages simultaneously.In conventional QD protocols,photons need to transmit in the quantum channel for two rounds.In this paper,we pr...Quantum dialogue(QD)enables two communication parties to directly exchange secret messages simultaneously.In conventional QD protocols,photons need to transmit in the quantum channel for two rounds.In this paper,we propose a one-step QD protocol based on the hyperentanglement.With the help of the non-local hyperentanglement-assisted Bell state measurement(BSM),the photons only need to transmit in the quantum channel once.We prove that our one-step QD protocol is secure in theory and numerically simulate its secret message capacity under practical experimental condition.Compared with previous QD protocols,the one-step QD protocol can effectively simplify the experiment operations and reduce the message loss caused by the photon transmission loss.Meanwhile,the non-local hyperentanglement-assisted BSM has a success probability of 100%and is feasible with linear optical elements.Moreover,combined with the hyperentanglement heralded amplification and purification,our protocol is possible to realize long-distance one-step QD.展开更多
We propose a scheme capable of performing complete Bell-state analysis for a single-photon hybrid entangled state.Our single-photon state is encoded in both polarization and frequency degrees of freedom.The setup of t...We propose a scheme capable of performing complete Bell-state analysis for a single-photon hybrid entangled state.Our single-photon state is encoded in both polarization and frequency degrees of freedom.The setup of the scheme is composed of polarizing beam splitters,half wave plates,frequency shifters,and independent wavelength division multiplexers,which are feasible using current technology.We also show that with this setup we can perform complete two-photon Bell-state analysis schemes for polarization degrees of freedom.Moreover,it can also be used to perform the teleportation scheme between different degrees of freedom.This setup may allow extensive applications in current quantum communications.展开更多
We present an efficient entanglement purification protocol (EPP) with controlled-not (CNOT) gates and linear optics. With the CNOT gates, our EPP can reach a higher fidelity than the conventional one. Moreover, it...We present an efficient entanglement purification protocol (EPP) with controlled-not (CNOT) gates and linear optics. With the CNOT gates, our EPP can reach a higher fidelity than the conventional one. Moreover, it does not require the fidelity of the initial mixed state to satisfy 1 2. If the initial state is not entangled, it still can be purified. With the linear optics, this protocol can get pure maximally entangled pairs with some probabilities. Meanwhile, it can be used to purify the entanglement between the atomic ensembles in distant locations. This protocol may be useful in long-distance quantum communication.展开更多
We propose a linear optical protocol to generate three-photon and four-photon entangled states without resorting to entangled sources. The setup in this protocol is composed of three beam splitters and two half-wave p...We propose a linear optical protocol to generate three-photon and four-photon entangled states without resorting to entangled sources. The setup in this protocol is composed of three beam splitters and two half-wave plates. We can obtain three-photon and four-photon entangled states with postselection, as with other protocols. This protocol has the advantage of high efficiency and is more feasible than others.展开更多
An entangled coherent state (ECS) is one type of entanglement, which is widely discussed in the application of quan- tum information processing (QIP). In this paper, we propose an entanglement concentration protoc...An entangled coherent state (ECS) is one type of entanglement, which is widely discussed in the application of quan- tum information processing (QIP). In this paper, we propose an entanglement concentration protocol (ECP) to distill the maximally entangled W-type ECS from the partially entangled W-type ECS. In the ECP, we adopt the balanced beam split- ter (BS) to make the parity check measurement. Our ECP is quite different from the conventional ECPs. After performing the ECP, not only can we obtain the maximally entangled ECS with some success probability, but also we can increase the amplitude of the coherent state. Therefore, it is especially useful in long-distance quantum communication, if the photon loss is considered.展开更多
We present an efficient entanglement concentration protocol (ECP) for mobile electrons with charge detection. This protocol is quite different from other ECPs for one can obtain a maximally entangled pair from a pai...We present an efficient entanglement concentration protocol (ECP) for mobile electrons with charge detection. This protocol is quite different from other ECPs for one can obtain a maximally entangled pair from a pair of less-entangled state and a single mobile electron with a certain probability. With the help of charge detection, it can be repeated to reach a higher success probability. It also does not need to know the coefficient of the original less-entangled states. All these advantages may make this protocol useful in current distributed quantum information processing.展开更多
Quantum secret sharing(QSS) is a typical multi-party quantum communication mode, in which the key sender splits a key into several parts and the participants can obtain the key by cooperation. Measurement-device-indep...Quantum secret sharing(QSS) is a typical multi-party quantum communication mode, in which the key sender splits a key into several parts and the participants can obtain the key by cooperation. Measurement-device-independent quantum secret sharing(MDI-QSS) is immune to all possible attacks from measurement devices and can greatly enhance QSS's security in practical applications. However, previous MDI-QSS's key generation rate is relatively low. Here, we adopt the polarization-spatial-mode hyper-encoding technology in the MDI-QSS, which can increase single photon's channel capacity. Meanwhile, we use the cross-Kerr nonlinearity to realize the complete hyper-entangled Greenberger-Horne-Zeilinger state analysis. Both above factors can increase MDI-QSS's key generation rate by about 10^(3). The proposed hyper-encoded MDI-QSS protocol may be useful for future multiparity quantum communication applications.展开更多
We present an efficient entanglement concentration protocol(ECP) for the less-entangled W state with some identical conventional polarized single photons.In the protocol,two of the parties say Alice and Charlie shou...We present an efficient entanglement concentration protocol(ECP) for the less-entangled W state with some identical conventional polarized single photons.In the protocol,two of the parties say Alice and Charlie should perform the parity check measurements and they can ultimately obtain the maximally entangled W state with a certain success probability.Otherwise,they can obtain another less-entangled W state,which can be reconcentrated into the maximally entangled W state.By iterating this ECP,a high success probability can be achieved.This ECP may be an optimal one and it is useful in current quantum information processing.展开更多
This paper presents a scheme for faithfully distributing a pure entanglement between two parties over an arbitrary collective-noise channel with linear optics. The transmission is assisted by an additional qubit again...This paper presents a scheme for faithfully distributing a pure entanglement between two parties over an arbitrary collective-noise channel with linear optics. The transmission is assisted by an additional qubit against collective noise. The receiver can take advantage of the time discrimination and the measurement results of the assistant qubit to reconstruct a pure entanglement with the sender. Although the scheme succeeds probabilistically, the resource used to get a pure entanglement state is finite, and so is easier to establish entanglement in practice than quantum entanglement purification.展开更多
We describe an efficient entanglement concentration protocol (ECP) for an arbitrary partially entangled threeelectron W state. We show that with the help of two ancillary single electrons, the concentration task can...We describe an efficient entanglement concentration protocol (ECP) for an arbitrary partially entangled threeelectron W state. We show that with the help of two ancillary single electrons, the concentration task can be well completed. This ECP has several advantages: Firstly, we only require one pair of partially entangled states. Secondly, only two single electrons are used during the whole protocol. Thirdly, we do not require all the parties to participate in the whole process, and only two parties are needed to perform the operation. Fourthly, the protocol can 5e repeated to obtain a high success probability. This ECP may be useful in current quantum computation and quantum communication.展开更多
Single-photon entanglement(SPE) is an important source in quantum communication. In this paper, we put forward a single-photon-assisted noiseless linear amplification protocol to protect the SPE of an arbitrary polari...Single-photon entanglement(SPE) is an important source in quantum communication. In this paper, we put forward a single-photon-assisted noiseless linear amplification protocol to protect the SPE of an arbitrary polarization–time-bin qudit from the photon transmission loss caused by the practical channel noise. After the amplification, the fidelity of the SPE can be effectively increased. Meanwhile, the encoded polarization–time-bin features of the qudit can be well preserved. The protocol can be realized under the current experimental conditions. Moreover, the amplification protocol can be extended to resist complete photon loss and partial photon loss during the photon transmission. After the amplification, we can not only increase the fidelity of the target state, but also solve the decoherence problem simultaneously. Based on the above features, our amplification protocol may be useful in future quantum communication.展开更多
We put forward two efficient entanglement concentration protocols (ECPs) for arbitrary less-entangled NOON state. Both ECPs only require one pair of less-entangled NOON state and an auxiliary photon. In the first EC...We put forward two efficient entanglement concentration protocols (ECPs) for arbitrary less-entangled NOON state. Both ECPs only require one pair of less-entangled NOON state and an auxiliary photon. In the first ECR the auxiliary photon is shared by two parties, while in the second ECP, the auxiliary photon is only possessed by one party, which can increase the practical success probability by avoiding the transmission loss and simplify the operations. Moreover, both ECPs can be used repeatedly to get a high success probability. Based on the above features, our two ECPs, especially the second one, may be useful in the quantum information processing.展开更多
We experimentally demonstrate a quantum key distribution protocol using entangled photon pairs in orbital angular momentum(OAM).Here Alice uses a fixed phase hologram to modulate her OAM state on one photon with a spa...We experimentally demonstrate a quantum key distribution protocol using entangled photon pairs in orbital angular momentum(OAM).Here Alice uses a fixed phase hologram to modulate her OAM state on one photon with a spatial light modulator(SLM),while Bob uses the designed N different phase holograms for his N-based keys on the other photon with his SLM.With coincidences,Alice can fully retrieve the keys sent by Bob without reconciliation.We report the experiment results with N=3 and OAM eigenmodes|l=±1>,and discuss the security from the light path and typical attacks.展开更多
Entanglement purification is to distill the high quality entanglement from the low quality entanglement with local operations and classical communications. It is one of the key technologies in long-distance quantum co...Entanglement purification is to distill the high quality entanglement from the low quality entanglement with local operations and classical communications. It is one of the key technologies in long-distance quantum communication. We discuss an entanglement purification protocol(EPP) with spontaneous parametric down conversion(SPDC) sources, in contrast to previous EPP with multi-copy mixed states, which requires ideal entanglement sources. We show that the SPDC source is not an obstacle for purification, but can benefit the fidelity of the purified mixed state. This EPP works for linear optics and is feasible in current experiment technology.展开更多
Hybrid entangled state (HES) is a new type of entanglement, which combines the advantages of an entangled po- larization state and an entangled coherent state. HES is widely discussed in the applications of quantum ...Hybrid entangled state (HES) is a new type of entanglement, which combines the advantages of an entangled po- larization state and an entangled coherent state. HES is widely discussed in the applications of quantum communication and computation. In this paper, we propose three entanglement concentration protocols (ECPs) for Bell-type HES, W-type HES, and cluster-type HES, respectively. After performing these ECPs, we can obtain the maximally entangled HES with some success probability. All the ECPs exploit the single coherent state to complete the concentration. These protocols are based on the linear optics, which are feasible in future experiments.展开更多
We describe an entanglement purification protocol for a polarization Bell state. Different from the previous protocols,it does not require the controlled-not gate, and only uses linear optical elements to complete the...We describe an entanglement purification protocol for a polarization Bell state. Different from the previous protocols,it does not require the controlled-not gate, and only uses linear optical elements to complete the task. This protocol requires multi-copy degraded mixed states, which can make this protocol obtain a high fidelity in one purification step. It can also be extended to purify the multi-photon Greenberger–Horne–Zeilinger(GHZ) state. This protocol may be useful in future long-distance communication.展开更多
We propose a protocol for directly measuring the concurrence of a two-qubit electronic pure entangled state. To complete this task, we first design a parity-check measurement(PCM) which is constructed by two polariz...We propose a protocol for directly measuring the concurrence of a two-qubit electronic pure entangled state. To complete this task, we first design a parity-check measurement(PCM) which is constructed by two polarization beam splitters(PBSs) and a charge detector. By using the PCM for three rounds, we can achieve the concurrence by calculating the total probability of picking up the odd parity states from the initial states. Since the conduction electron may be a good candidate for the realization of quantum computation, this protocol may be useful in future solid quantum computation.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12175106 and 92365110).
文摘Quantum dialogue(QD)enables two communication parties to directly exchange secret messages simultaneously.In conventional QD protocols,photons need to transmit in the quantum channel for two rounds.In this paper,we propose a one-step QD protocol based on the hyperentanglement.With the help of the non-local hyperentanglement-assisted Bell state measurement(BSM),the photons only need to transmit in the quantum channel once.We prove that our one-step QD protocol is secure in theory and numerically simulate its secret message capacity under practical experimental condition.Compared with previous QD protocols,the one-step QD protocol can effectively simplify the experiment operations and reduce the message loss caused by the photon transmission loss.Meanwhile,the non-local hyperentanglement-assisted BSM has a success probability of 100%and is feasible with linear optical elements.Moreover,combined with the hyperentanglement heralded amplification and purification,our protocol is possible to realize long-distance one-step QD.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11104159,61201164,and 61271238)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics Scientific,Tsinghua University,China+2 种基金the Open Research Fund Program of National Laboratory of Solid State Microstructures,Nanjing University,China (Grant Nos. M25020 and M25022)the Priority Academic Development Program of Jiangsu Higher Education Institutions,China,the Open Research Fund of National Mobile Communications Research Laboratory of Southeast University,China (Grant No. 2011D05)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123223110003)
文摘We propose a scheme capable of performing complete Bell-state analysis for a single-photon hybrid entangled state.Our single-photon state is encoded in both polarization and frequency degrees of freedom.The setup of the scheme is composed of polarizing beam splitters,half wave plates,frequency shifters,and independent wavelength division multiplexers,which are feasible using current technology.We also show that with this setup we can perform complete two-photon Bell-state analysis schemes for polarization degrees of freedom.Moreover,it can also be used to perform the teleportation scheme between different degrees of freedom.This setup may allow extensive applications in current quantum communications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11104159 and 10904074)the Scientific Research Foundation of Nanjing University of Posts and Telecommunications, China (Grant No. NY211008)+2 种基金the University Natural Science Research Foundation of Jiangsu Province, China (Grant No. 11KJA510002)the Open Research Fund of Key Labof Broadband Wireless Communication and Sensor Network Technology (Nanjing University of Posts and Telecommunications) of Ministry of Education, Chinathe Priority Academic Program Development Fund of Jiangsu Higher Education Institutions,China
文摘We present an efficient entanglement purification protocol (EPP) with controlled-not (CNOT) gates and linear optics. With the CNOT gates, our EPP can reach a higher fidelity than the conventional one. Moreover, it does not require the fidelity of the initial mixed state to satisfy 1 2. If the initial state is not entangled, it still can be purified. With the linear optics, this protocol can get pure maximally entangled pairs with some probabilities. Meanwhile, it can be used to purify the entanglement between the atomic ensembles in distant locations. This protocol may be useful in long-distance quantum communication.
基金Supported by the National Natural Science Foundation of China under Grant No 10604008 and Foundation for the Author of National Excellent Doctoral Dissertation of China under Grant No 200723.
文摘We propose a linear optical protocol to generate three-photon and four-photon entangled states without resorting to entangled sources. The setup in this protocol is composed of three beam splitters and two half-wave plates. We can obtain three-photon and four-photon entangled states with postselection, as with other protocols. This protocol has the advantage of high efficiency and is more feasible than others.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11347110,11104159,and 61201164)the Qing Lan Project,Jiangsu Province,1311 Talent Plan,Nanjing University of Posts and Telecommunicationsthe Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘An entangled coherent state (ECS) is one type of entanglement, which is widely discussed in the application of quan- tum information processing (QIP). In this paper, we propose an entanglement concentration protocol (ECP) to distill the maximally entangled W-type ECS from the partially entangled W-type ECS. In the ECP, we adopt the balanced beam split- ter (BS) to make the parity check measurement. Our ECP is quite different from the conventional ECPs. After performing the ECP, not only can we obtain the maximally entangled ECS with some success probability, but also we can increase the amplitude of the coherent state. Therefore, it is especially useful in long-distance quantum communication, if the photon loss is considered.
基金Project supported by the National Natural Science Foundation of China(Grant No.11104159)the Natural Science Research Project of Universities of Jiangsu Province,China(Grant No.13KJB140010)the Priority Academic Development Program of Jiangsu Higher Education Institutions,China
文摘We present an efficient entanglement concentration protocol (ECP) for mobile electrons with charge detection. This protocol is quite different from other ECPs for one can obtain a maximally entangled pair from a pair of less-entangled state and a single mobile electron with a certain probability. With the help of charge detection, it can be repeated to reach a higher success probability. It also does not need to know the coefficient of the original less-entangled states. All these advantages may make this protocol useful in current distributed quantum information processing.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11974189 and 12175106)。
文摘Quantum secret sharing(QSS) is a typical multi-party quantum communication mode, in which the key sender splits a key into several parts and the participants can obtain the key by cooperation. Measurement-device-independent quantum secret sharing(MDI-QSS) is immune to all possible attacks from measurement devices and can greatly enhance QSS's security in practical applications. However, previous MDI-QSS's key generation rate is relatively low. Here, we adopt the polarization-spatial-mode hyper-encoding technology in the MDI-QSS, which can increase single photon's channel capacity. Meanwhile, we use the cross-Kerr nonlinearity to realize the complete hyper-entangled Greenberger-Horne-Zeilinger state analysis. Both above factors can increase MDI-QSS's key generation rate by about 10^(3). The proposed hyper-encoded MDI-QSS protocol may be useful for future multiparity quantum communication applications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11104159 and 61271238)the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (Grant No. NY211008)+3 种基金the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics,Tsinghua University,the Open Research Fund Program of National Laboratory of Solid State Microstructures,Nanjing University,(Grant Nos. M25020 and M25022)the University Natural Science Research Foundation of Jiangsu Province (Grant No. 11KJA510002)the Open Research Fund of the Key Laboratory of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications,Ministry of Education,Chinathe Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘We present an efficient entanglement concentration protocol(ECP) for the less-entangled W state with some identical conventional polarized single photons.In the protocol,two of the parties say Alice and Charlie should perform the parity check measurements and they can ultimately obtain the maximally entangled W state with a certain success probability.Otherwise,they can obtain another less-entangled W state,which can be reconcentrated into the maximally entangled W state.By iterating this ECP,a high success probability can be achieved.This ECP may be an optimal one and it is useful in current quantum information processing.
基金supported by the National Natural Science Foundation of China (Grant No 10604008)Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No 200723)Beijing Natural Science Foundation (Grant No 1082008)
文摘This paper presents a scheme for faithfully distributing a pure entanglement between two parties over an arbitrary collective-noise channel with linear optics. The transmission is assisted by an additional qubit against collective noise. The receiver can take advantage of the time discrimination and the measurement results of the assistant qubit to reconstruct a pure entanglement with the sender. Although the scheme succeeds probabilistically, the resource used to get a pure entanglement state is finite, and so is easier to establish entanglement in practice than quantum entanglement purification.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11104159, 11347110 and 61201164, and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘We describe an efficient entanglement concentration protocol (ECP) for an arbitrary partially entangled threeelectron W state. We show that with the help of two ancillary single electrons, the concentration task can be well completed. This ECP has several advantages: Firstly, we only require one pair of partially entangled states. Secondly, only two single electrons are used during the whole protocol. Thirdly, we do not require all the parties to participate in the whole process, and only two parties are needed to perform the operation. Fourthly, the protocol can 5e repeated to obtain a high success probability. This ECP may be useful in current quantum computation and quantum communication.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474168 and 11747161)the Priority Academic Program Development of Jiangsu Higher Education Institutions,Chinathe China Postdoctoral Science Foundation(Grant No.2018M642293)
文摘Single-photon entanglement(SPE) is an important source in quantum communication. In this paper, we put forward a single-photon-assisted noiseless linear amplification protocol to protect the SPE of an arbitrary polarization–time-bin qudit from the photon transmission loss caused by the practical channel noise. After the amplification, the fidelity of the SPE can be effectively increased. Meanwhile, the encoded polarization–time-bin features of the qudit can be well preserved. The protocol can be realized under the current experimental conditions. Moreover, the amplification protocol can be extended to resist complete photon loss and partial photon loss during the photon transmission. After the amplification, we can not only increase the fidelity of the target state, but also solve the decoherence problem simultaneously. Based on the above features, our amplification protocol may be useful in future quantum communication.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474168 and 61401222)the Qing Lan Project of Jiangsu Province of China+1 种基金the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20151502)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘We put forward two efficient entanglement concentration protocols (ECPs) for arbitrary less-entangled NOON state. Both ECPs only require one pair of less-entangled NOON state and an auxiliary photon. In the first ECR the auxiliary photon is shared by two parties, while in the second ECP, the auxiliary photon is only possessed by one party, which can increase the practical success probability by avoiding the transmission loss and simplify the operations. Moreover, both ECPs can be used repeatedly to get a high success probability. Based on the above features, our two ECPs, especially the second one, may be useful in the quantum information processing.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61271238 and 10904074the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20123223110003+3 种基金the University Natural Science Research Foundation of Jiangsu Province under Grant No 11KJA510002the Open Research Fund of National Laboratory of Solid State Microstructures under Grant Nos M25020 and M25022Qinglan Project of Jiangsu Provincethe Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘We experimentally demonstrate a quantum key distribution protocol using entangled photon pairs in orbital angular momentum(OAM).Here Alice uses a fixed phase hologram to modulate her OAM state on one photon with a spatial light modulator(SLM),while Bob uses the designed N different phase holograms for his N-based keys on the other photon with his SLM.With coincidences,Alice can fully retrieve the keys sent by Bob without reconciliation.We report the experiment results with N=3 and OAM eigenmodes|l=±1>,and discuss the security from the light path and typical attacks.
基金supported by the National Natural Science Foundation of China(Grant Nos.11474168 and 61401222)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20151502)+1 种基金the Qing Lan Project in Jiangsu Province,Chinaa Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Entanglement purification is to distill the high quality entanglement from the low quality entanglement with local operations and classical communications. It is one of the key technologies in long-distance quantum communication. We discuss an entanglement purification protocol(EPP) with spontaneous parametric down conversion(SPDC) sources, in contrast to previous EPP with multi-copy mixed states, which requires ideal entanglement sources. We show that the SPDC source is not an obstacle for purification, but can benefit the fidelity of the purified mixed state. This EPP works for linear optics and is feasible in current experiment technology.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474168 and 61401222)the Natural Science Foundation of Jiangsu Province+3 种基金China(Grant No.BK20151502)the Qing Lan Project in Jiangsu Province,Chinathe Natural Science Foundation of Jiangsu Higher Education Institutions,China(Grant No.15KJA120002)the Priority Academic Development Program of Jiangsu Higher Education Institutions,China
文摘Hybrid entangled state (HES) is a new type of entanglement, which combines the advantages of an entangled po- larization state and an entangled coherent state. HES is widely discussed in the applications of quantum communication and computation. In this paper, we propose three entanglement concentration protocols (ECPs) for Bell-type HES, W-type HES, and cluster-type HES, respectively. After performing these ECPs, we can obtain the maximally entangled HES with some success probability. All the ECPs exploit the single coherent state to complete the concentration. These protocols are based on the linear optics, which are feasible in future experiments.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474168 and 61401222)the Qing Lan Project of Jiangsu Province+6 种基金Chinathe STITP Project in Nanjing University of Posts and Telecommunicationsthe Natural Science Foundation of Jiangsu ProvinceChina(Grant No.BK20151502)the Natural Science Foundation of the Jiangsu Higher Education Institutions(Grant No.15KJA120002)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education InstitutionsChina
文摘We describe an entanglement purification protocol for a polarization Bell state. Different from the previous protocols,it does not require the controlled-not gate, and only uses linear optical elements to complete the task. This protocol requires multi-copy degraded mixed states, which can make this protocol obtain a high fidelity in one purification step. It can also be extended to purify the multi-photon Greenberger–Horne–Zeilinger(GHZ) state. This protocol may be useful in future long-distance communication.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474168 and 61401222)the Qing Lan Project in Jiangsu Province,Chinathe Priority Academic Development Program of Jiangsu Higher Education Institutions,China
文摘We propose a protocol for directly measuring the concurrence of a two-qubit electronic pure entangled state. To complete this task, we first design a parity-check measurement(PCM) which is constructed by two polarization beam splitters(PBSs) and a charge detector. By using the PCM for three rounds, we can achieve the concurrence by calculating the total probability of picking up the odd parity states from the initial states. Since the conduction electron may be a good candidate for the realization of quantum computation, this protocol may be useful in future solid quantum computation.