期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多层特征融合可调监督函数卷积神经网络的人脸性别识别 被引量:15
1
作者 石学超 周亚同 池越 《计算机应用研究》 CSCD 北大核心 2019年第3期940-944,共5页
为了进一步提高性别识别的准确率,提出了一种基于多层特征融合与可调监督函数机制结合的卷积神经网络(L-MFCNN)模型,并将之用于人脸性别识别。与传统卷积神经网络(CNN)不同,L-MFCNN将多个浅层中间卷积层特征输出与最后卷积层特征输出相... 为了进一步提高性别识别的准确率,提出了一种基于多层特征融合与可调监督函数机制结合的卷积神经网络(L-MFCNN)模型,并将之用于人脸性别识别。与传统卷积神经网络(CNN)不同,L-MFCNN将多个浅层中间卷积层特征输出与最后卷积层特征输出相结合,融合多层卷积层的特征,不仅利用了深层卷积的整体语义信息,还考虑了浅层卷积的细节局部纹理信息,使得性别识别更加准确。此外L-MFCNN还引入具有可调目标监督函数机制的large-margin softmax loss作为输出层,利用其调节不同的间隔(margin)的机制来有效引导深层卷积网络学习,使得同种性别间的类内间距更小,不同性别间的类间距更大,获得更好的性别识别效果。在多个人脸数据集上的性别识别实验结果表明,L-MFCNN的识别准确率要高于其他传统的卷积网络模型。L-MFCNN模型也为将来的人脸性别识别研究提供了新的思路与方向。 展开更多
关键词 人脸性别识别 多层特征融合 卷积神经网络 深度学习
下载PDF
自然场景下基于四级级联全卷积神经网络的人脸检测算法 被引量:3
2
作者 石学超 周亚同 韩卫雪 《铁道学报》 EI CAS CSCD 北大核心 2019年第1期80-86,共7页
针对于自然场景下人脸检测存在的姿态复杂、遮挡和光照等问题,提出一种基于4级级联全卷积神经网络的人脸检测算法。构建4级级联网络,采用级联分级训练代替端到端训练,以避免只共享1个网络权值的局限,进而获得有区分性功能的深度网络,提... 针对于自然场景下人脸检测存在的姿态复杂、遮挡和光照等问题,提出一种基于4级级联全卷积神经网络的人脸检测算法。构建4级级联网络,采用级联分级训练代替端到端训练,以避免只共享1个网络权值的局限,进而获得有区分性功能的深度网络,提高检测精度;每级深度网络结构均采用全卷积结构,可以接受任意尺寸图像的输入,提高检测效率;另外在训练过程采用自举法Bootstrap进行网络模型的优化训练,提高训练样本利用率;利用最终训练好的深度卷积网络模型实现人脸检测。人脸检测实验结果标明,本算法在自然场景下,对多姿态、遮挡、单图多种人脸类型等均具有良好的鲁棒性,同时在现有平台上每张图片的检测速度达到96ms,在国际权威的人脸检测公开测试集FDDB上的"真正率"达到82.98%。 展开更多
关键词 人脸检测 4级级联网络 全卷积网络 自举训练 深度学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部