针对高超声速飞行器无动力再入过程中具有强耦合、气动参数摄动及不确定性的非线性姿态模型,结合自抗扰控制中的扩张状态观测器(extended state observer,ESO)及非线性状态误差反馈律(nonlinear law state error feedback,NLSEF),分别...针对高超声速飞行器无动力再入过程中具有强耦合、气动参数摄动及不确定性的非线性姿态模型,结合自抗扰控制中的扩张状态观测器(extended state observer,ESO)及非线性状态误差反馈律(nonlinear law state error feedback,NLSEF),分别设计了高超声速飞行器内环和外环自抗扰姿态控制器。将不确定性、耦合及参数摄动等干扰作为"总和干扰"利用扩张状态观测器进行估计并动态反馈补偿,再利用NLSEF抑制补偿残差。自抗扰控制器(active disturbance rejection control,ADRC)设计无需精确的飞行器被控模型,也无需精确的气动参数及摄动界限。仿真结果表明,控制系统能够克服干扰及气动参数大范围摄动的影响,在获取良好的动态品质和跟踪性能的同时,具有较强的鲁棒性。展开更多
Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller i...Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller improves the control quality and expands the stable region of the system parameters.ADRC fractional order(ADRFO)PID controller is designed by combining ADRC with the fractional order PID and applied to reentry attitude control of hypersonic vehicle.Simulation results show that ADRFO PID controller has better control effect and greater stable region for the strong nonlinear model of hypersonic flight vehicle under the influence of external disturbance,and has stronger robustness against the perturbation in system parameters.展开更多
高速飞行器再入过程中,具有参数大范围快速时变、强非线性的特性,对控制器的控制品质和稳定性提出了更高的要求。本文通过最优Oustaloup数字算法框图化实现分数阶PI^(λ)D^(μ)(Fractional-order PID,FOPID)控制器,建立高速飞行器参数...高速飞行器再入过程中,具有参数大范围快速时变、强非线性的特性,对控制器的控制品质和稳定性提出了更高的要求。本文通过最优Oustaloup数字算法框图化实现分数阶PI^(λ)D^(μ)(Fractional-order PID,FOPID)控制器,建立高速飞行器参数时变的非线性模型,结合ITAE(Integrated Time and Absolute Error)指标利用遗传算法(Genetic Algorithm,GA)寻优整定分数阶PI^(λ)D^(μ)参数,然后针对选定的分数阶PI^(λ)D^(μ)控制器,利用D-分解法分析高速飞行器的马赫数及攻角稳定区域。最后结合跟踪微分器设计了改进的分数阶PI^(λ)D^(μ)控制器。仿真结果表明,分数阶PI^(λ)D^(μ)控制器在具有更好的控制品质的同时可以在大范围内实现高速飞行器的稳定飞行。展开更多
文摘针对高超声速飞行器无动力再入过程中具有强耦合、气动参数摄动及不确定性的非线性姿态模型,结合自抗扰控制中的扩张状态观测器(extended state observer,ESO)及非线性状态误差反馈律(nonlinear law state error feedback,NLSEF),分别设计了高超声速飞行器内环和外环自抗扰姿态控制器。将不确定性、耦合及参数摄动等干扰作为"总和干扰"利用扩张状态观测器进行估计并动态反馈补偿,再利用NLSEF抑制补偿残差。自抗扰控制器(active disturbance rejection control,ADRC)设计无需精确的飞行器被控模型,也无需精确的气动参数及摄动界限。仿真结果表明,控制系统能够克服干扰及气动参数大范围摄动的影响,在获取良好的动态品质和跟踪性能的同时,具有较强的鲁棒性。
基金Supported by the Innovation Foundation of Aerospace Science and Technology(CASC200902)~~
文摘Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller improves the control quality and expands the stable region of the system parameters.ADRC fractional order(ADRFO)PID controller is designed by combining ADRC with the fractional order PID and applied to reentry attitude control of hypersonic vehicle.Simulation results show that ADRFO PID controller has better control effect and greater stable region for the strong nonlinear model of hypersonic flight vehicle under the influence of external disturbance,and has stronger robustness against the perturbation in system parameters.
文摘高速飞行器再入过程中,具有参数大范围快速时变、强非线性的特性,对控制器的控制品质和稳定性提出了更高的要求。本文通过最优Oustaloup数字算法框图化实现分数阶PI^(λ)D^(μ)(Fractional-order PID,FOPID)控制器,建立高速飞行器参数时变的非线性模型,结合ITAE(Integrated Time and Absolute Error)指标利用遗传算法(Genetic Algorithm,GA)寻优整定分数阶PI^(λ)D^(μ)参数,然后针对选定的分数阶PI^(λ)D^(μ)控制器,利用D-分解法分析高速飞行器的马赫数及攻角稳定区域。最后结合跟踪微分器设计了改进的分数阶PI^(λ)D^(μ)控制器。仿真结果表明,分数阶PI^(λ)D^(μ)控制器在具有更好的控制品质的同时可以在大范围内实现高速飞行器的稳定飞行。