期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于依赖类型剪枝的双特征自适应融合网络用于方面级情感分析
1
作者 郑诚 石景伟 +1 位作者 魏素华 程嘉铭 《计算机科学》 CSCD 北大核心 2024年第3期205-213,共9页
现有的模型将基于依赖树的图神经网络用于方面级情感分析,一定程度上提升了模型的分类性能。然而,由于依赖解析技术的限制,语法解析结果的不精确导致依赖树存在大量噪声,使得模型的性能提升有限。此外,一些句子本身并不符合标准的句法... 现有的模型将基于依赖树的图神经网络用于方面级情感分析,一定程度上提升了模型的分类性能。然而,由于依赖解析技术的限制,语法解析结果的不精确导致依赖树存在大量噪声,使得模型的性能提升有限。此外,一些句子本身并不符合标准的句法结构。以往的研究以同样的置信度利用句法信息和语义信息,没有充分考虑它们对于确定方面词极性的贡献的不同,导致模型在相应的数据集上性能较差。为了克服这些困难,文中提出了一种基于依赖类型剪枝的双特征自适应融合网络。具体来说,该模型使用一种新型的混合方法,命名为依赖关系类型剪枝和邻接矩阵平滑,来缓解句法解析产生的噪声。此外,该模型通过双特征自适应融合模块充分考虑句子的句法信息的可用程度,以一种更灵活的方式将句法特征和语义特征结合起来用于方面级情感分析。在5个公开可用的数据集上进行广泛的实验,结果证明了该方法明显优于基线模型。 展开更多
关键词 方面级情感分析 图神经网络 依赖类型剪枝 双特征自适应融合 深度学习 自然语言处理
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部