支持向量机(Support Vector Machine,简称SVM)具有泛化性高、全局最优、对样本的充分性要求不高等优点,在集中式的入侵检测问题中得到较好应用.文章将SVM算法推广到分布式入侵检测环境中,提出基于SVM的分布式学习算法,并在KDD Cup 99数...支持向量机(Support Vector Machine,简称SVM)具有泛化性高、全局最优、对样本的充分性要求不高等优点,在集中式的入侵检测问题中得到较好应用.文章将SVM算法推广到分布式入侵检测环境中,提出基于SVM的分布式学习算法,并在KDD Cup 99数据集上与集中式方式进行了对比实验.结果表明,该算法不仅能降低网络中的通信负载,而且取得了与集中式方式相当的检测性能.展开更多
文摘支持向量机(Support Vector Machine,简称SVM)具有泛化性高、全局最优、对样本的充分性要求不高等优点,在集中式的入侵检测问题中得到较好应用.文章将SVM算法推广到分布式入侵检测环境中,提出基于SVM的分布式学习算法,并在KDD Cup 99数据集上与集中式方式进行了对比实验.结果表明,该算法不仅能降低网络中的通信负载,而且取得了与集中式方式相当的检测性能.