水库进行水力排沙时,高含沙水流过程可能会对鱼类等水生动物产生负面影响,其量化评估方法研究较为薄弱。为了预测和评估水库排沙过程对下游鱼类的影响,本文利用黄河花斑裸鲤和鲤鱼在高含沙水体中生存特性研究的实验数据,综合考虑含沙量...水库进行水力排沙时,高含沙水流过程可能会对鱼类等水生动物产生负面影响,其量化评估方法研究较为薄弱。为了预测和评估水库排沙过程对下游鱼类的影响,本文利用黄河花斑裸鲤和鲤鱼在高含沙水体中生存特性研究的实验数据,综合考虑含沙量和粒径、溶解氧、暴露时间、水温等因子对鱼类生存的影响,建立了基于IPSO-BP神经网络的高含沙水体对鱼类致死影响预测方法,对目标鱼类死亡率的预测误差小于6%。本文使用了与BP神经网络紧密耦合并引入动态参数和变异扰动的IPSO算法,较BP和PSO-BP神经网络预测能力更佳,相比国内外已有的Stress Index(SI)、Severity of Ill Effect(SEV)和多元拟合方法预测精度得到显著提升。分析表明,本文提出的预测方法能够考虑高含沙水体中鱼类生存受多环境因子联合制约,且多因子之间存在复杂关联的情况,可为评估高含沙水流过程对水生态的影响提供新的方法。展开更多
文摘水库进行水力排沙时,高含沙水流过程可能会对鱼类等水生动物产生负面影响,其量化评估方法研究较为薄弱。为了预测和评估水库排沙过程对下游鱼类的影响,本文利用黄河花斑裸鲤和鲤鱼在高含沙水体中生存特性研究的实验数据,综合考虑含沙量和粒径、溶解氧、暴露时间、水温等因子对鱼类生存的影响,建立了基于IPSO-BP神经网络的高含沙水体对鱼类致死影响预测方法,对目标鱼类死亡率的预测误差小于6%。本文使用了与BP神经网络紧密耦合并引入动态参数和变异扰动的IPSO算法,较BP和PSO-BP神经网络预测能力更佳,相比国内外已有的Stress Index(SI)、Severity of Ill Effect(SEV)和多元拟合方法预测精度得到显著提升。分析表明,本文提出的预测方法能够考虑高含沙水体中鱼类生存受多环境因子联合制约,且多因子之间存在复杂关联的情况,可为评估高含沙水流过程对水生态的影响提供新的方法。