卷烟吸阻是卷烟设计制造中的核心指标。因涉及影响因素多且具有复杂的非线性特性,无论是基于多孔介质流体力学模型还是基于大量工程实践的经验模型,均无法定量指导设计与生产,至今卷烟吸阻仍以实验测试数据为评价依据。针对卷烟生产过...卷烟吸阻是卷烟设计制造中的核心指标。因涉及影响因素多且具有复杂的非线性特性,无论是基于多孔介质流体力学模型还是基于大量工程实践的经验模型,均无法定量指导设计与生产,至今卷烟吸阻仍以实验测试数据为评价依据。针对卷烟生产过程中产生的大量检测数据及数据的复杂多源和不断更迭的特性,提出了一种利用生产历史积累数据,通过K均值聚类算法清洗数据消除样本差异,结合自适应套索方法对输入变量进行降维处理和辅助变量选择,并利用选择稳定性评估对过程进行一致性约束,在多源数据和滚动过程一致选择出与吸阻原理模型匹配的关键影响指标,并将其作为径向基函数神经网络(RBFNN,radical basis function netural network)的输入,建立吸阻的推理预测模型。经验证,预测模型的均方误差为0.004,相对误差率控制在3%以内,实现了生产场景下的吸阻快速预测。展开更多
文摘卷烟吸阻是卷烟设计制造中的核心指标。因涉及影响因素多且具有复杂的非线性特性,无论是基于多孔介质流体力学模型还是基于大量工程实践的经验模型,均无法定量指导设计与生产,至今卷烟吸阻仍以实验测试数据为评价依据。针对卷烟生产过程中产生的大量检测数据及数据的复杂多源和不断更迭的特性,提出了一种利用生产历史积累数据,通过K均值聚类算法清洗数据消除样本差异,结合自适应套索方法对输入变量进行降维处理和辅助变量选择,并利用选择稳定性评估对过程进行一致性约束,在多源数据和滚动过程一致选择出与吸阻原理模型匹配的关键影响指标,并将其作为径向基函数神经网络(RBFNN,radical basis function netural network)的输入,建立吸阻的推理预测模型。经验证,预测模型的均方误差为0.004,相对误差率控制在3%以内,实现了生产场景下的吸阻快速预测。