设p,q,r为奇素数,p≡13 mod 24,q≡19 mod 24,(p/q)=-1.利用同余式、平方剩余、递归序列、Legendre符号的性质、Pell方程解的性质等证明了:(A)若r≡5 mod 12,则方程G:x3-1=2pqry2仅有平凡解(x,y)=(1,0);若r≡11 mod 12,则方程G最多有2...设p,q,r为奇素数,p≡13 mod 24,q≡19 mod 24,(p/q)=-1.利用同余式、平方剩余、递归序列、Legendre符号的性质、Pell方程解的性质等证明了:(A)若r≡5 mod 12,则方程G:x3-1=2pqry2仅有平凡解(x,y)=(1,0);若r≡11 mod 12,则方程G最多有2组正整数解.(B)若r≡11 mod 12,则方程H:x3+1=2pqry2仅有平凡解(x,y)=(-1,0);若r≡5 mod 12且(pq/r)=-1,则方程H最多有2组正整数解.展开更多
文摘设p,q,r为奇素数,p≡13 mod 24,q≡19 mod 24,(p/q)=-1.利用同余式、平方剩余、递归序列、Legendre符号的性质、Pell方程解的性质等证明了:(A)若r≡5 mod 12,则方程G:x3-1=2pqry2仅有平凡解(x,y)=(1,0);若r≡11 mod 12,则方程G最多有2组正整数解.(B)若r≡11 mod 12,则方程H:x3+1=2pqry2仅有平凡解(x,y)=(-1,0);若r≡5 mod 12且(pq/r)=-1,则方程H最多有2组正整数解.