期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于头峰的多步分解反应过程热失控特征参数计算方法研究
1
作者 乔德乾 翁仕春 +1 位作者 郭子超 饶国宁 《含能材料》 EI CAS CSCD 北大核心 2024年第3期280-288,共9页
目前微通道反应器在含能材料合成领域广泛应用,极大提高了合成过程的安全性,但是仍然需要关注物料的热稳定性。绝热条件下最大反应速率到达时间(TMR_(ad))与TMR_(ad)为24 h所对应的引发温度(T_(D24))是两个表征危险化学品及含能材料热... 目前微通道反应器在含能材料合成领域广泛应用,极大提高了合成过程的安全性,但是仍然需要关注物料的热稳定性。绝热条件下最大反应速率到达时间(TMR_(ad))与TMR_(ad)为24 h所对应的引发温度(T_(D24))是两个表征危险化学品及含能材料热分解危险性的重要特征参数,这两个参数的传统计算方法为单步N级法和数值计算法,存在分析过程费时费力的缺点。为此,根据差示扫描量热仪动态升温测试曲线,提出了基于头峰(即多峰曲线分峰后的第一个峰)的热分解失控特征参数计算方法,采用穷举法比较了该方法与模型计算法的T_(D24)偏差,进行了数值模拟验证,并基于文献实验计算了1,8-二硝基蒽醌、改性硝基胍(M-NQ)、1,5-二硝基蒽醌和3,4-二硝基呋咱基氧化呋咱(DNTF)4种物质的热失控特征参数。数值模拟结果表明,对于两步和三步连续反应,T_(D24)的最大偏差百分比分别为2.88%和6.9%,最大偏差为6.41℃;对于三步连续反应,T_(D24)最大偏差为5.39℃。结果表明,4种含能材料的T_(D24)计算偏差分别为-4.55,0.71,3.16℃和-0.84℃,与模型计算法得到的T_(D24)相比,偏差百分比的绝对值均小于2%,证实了T_(D24)计算方法的有效性,计算T_(D24)时偏差较小,计算简便,能够较为准确地获得其热分解失控特征参数。 展开更多
关键词 微通道 多步分解反应 最大反应速率到达时间 头峰 热分析动力学 数值模拟
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部