中国山水画风格迁移的目标是在保持原有山水真实场景图像内容的前提下,引入传统中国画作特征,以生成具有中国山水画艺术特征的图像。近年,由于深度学习的快速发展,卷积神经网络(CNN)和对抗生成网络(GAN)几乎主导了包括风格迁移在内的大...中国山水画风格迁移的目标是在保持原有山水真实场景图像内容的前提下,引入传统中国画作特征,以生成具有中国山水画艺术特征的图像。近年,由于深度学习的快速发展,卷积神经网络(CNN)和对抗生成网络(GAN)几乎主导了包括风格迁移在内的大部分图像生成任务,但也存在一些问题,如真实场景在风格迁移过程中易丢失语义,GAN网络训练出现模型坍塌,CNN风格迁移方法出现棋盘效应等。视觉Transformer模型为图像处理任务提供了新的解决方案,但训练需大量数据且计算复杂。为了解决生成中国画过程中由上述因素引起的图像质量低及细节特征丢失等问题,本文提出一种能基于细节特征提取融合的中国山水画风格迁移网络,即SSTR(swin style transfer transformer)。该网络在StyTr^(2)网络的基础上,引入了Swin–Transformer模型,利用视觉Transformer的强语义性保留山水场景的特征;同时利用Swin–Transformer模型的分层体系结构及滑窗操作计算注意力机制,提取更多的山水画艺术风格细节,同时降低模型训练复杂度;最后,引入一个CNN解码器细化生成目标图像。本文利用公开视觉数据集COCO 2014与公开山水画数据集进行训练、验证与测试,并将结果与基线方法进行比较。结果表明,SSTR在处理中国山水画风格迁移任务中,风格损失和内容损失分别为1.35和1.88,在风格损失上优于StyTr^(2),表现出了优异的特征提取能力和图像生成能力。展开更多
陶瓷文物修复是文物保护研究中一项重要内容,对碎片分类可提高修复效率。针对人工标注分类耗时长、效率低、主观因素大等问题,该文基于对比学习方法对陶瓷显微图像进行分类,然而,传统的SimCLR(a simple framework for contrastive learn...陶瓷文物修复是文物保护研究中一项重要内容,对碎片分类可提高修复效率。针对人工标注分类耗时长、效率低、主观因素大等问题,该文基于对比学习方法对陶瓷显微图像进行分类,然而,传统的SimCLR(a simple framework for contrastive learning of visual representations)对比学习网络不能精准提取陶瓷显微图像细节,因此,该文将SimCLR网络与多尺度方法结合,对陶瓷显微图像进行分类。首先,将采集到的陶瓷显微图像进行增强并提取特征,在特征提取模块使用多尺度卷积操作替换SimCLR中的标准卷积,使得网络具有更大的感受野,提取到更加准确的特征信息;其次,使用多层感知机(MLP)将提取到的特征进行降维处理,提高后续计算效率;最后,使用归一化温度标度的交叉熵损耗对模型进行优化。实验结果表明,改进后的网络在陶瓷显微图像分类中比原始网络准确率提高1.8%,达到98.6%,且网络参数只增加了0.11 m。该方法能以较小的代价有效对陶瓷碎片分类,辅助文物修复。展开更多
文摘中国山水画风格迁移的目标是在保持原有山水真实场景图像内容的前提下,引入传统中国画作特征,以生成具有中国山水画艺术特征的图像。近年,由于深度学习的快速发展,卷积神经网络(CNN)和对抗生成网络(GAN)几乎主导了包括风格迁移在内的大部分图像生成任务,但也存在一些问题,如真实场景在风格迁移过程中易丢失语义,GAN网络训练出现模型坍塌,CNN风格迁移方法出现棋盘效应等。视觉Transformer模型为图像处理任务提供了新的解决方案,但训练需大量数据且计算复杂。为了解决生成中国画过程中由上述因素引起的图像质量低及细节特征丢失等问题,本文提出一种能基于细节特征提取融合的中国山水画风格迁移网络,即SSTR(swin style transfer transformer)。该网络在StyTr^(2)网络的基础上,引入了Swin–Transformer模型,利用视觉Transformer的强语义性保留山水场景的特征;同时利用Swin–Transformer模型的分层体系结构及滑窗操作计算注意力机制,提取更多的山水画艺术风格细节,同时降低模型训练复杂度;最后,引入一个CNN解码器细化生成目标图像。本文利用公开视觉数据集COCO 2014与公开山水画数据集进行训练、验证与测试,并将结果与基线方法进行比较。结果表明,SSTR在处理中国山水画风格迁移任务中,风格损失和内容损失分别为1.35和1.88,在风格损失上优于StyTr^(2),表现出了优异的特征提取能力和图像生成能力。
文摘陶瓷文物修复是文物保护研究中一项重要内容,对碎片分类可提高修复效率。针对人工标注分类耗时长、效率低、主观因素大等问题,该文基于对比学习方法对陶瓷显微图像进行分类,然而,传统的SimCLR(a simple framework for contrastive learning of visual representations)对比学习网络不能精准提取陶瓷显微图像细节,因此,该文将SimCLR网络与多尺度方法结合,对陶瓷显微图像进行分类。首先,将采集到的陶瓷显微图像进行增强并提取特征,在特征提取模块使用多尺度卷积操作替换SimCLR中的标准卷积,使得网络具有更大的感受野,提取到更加准确的特征信息;其次,使用多层感知机(MLP)将提取到的特征进行降维处理,提高后续计算效率;最后,使用归一化温度标度的交叉熵损耗对模型进行优化。实验结果表明,改进后的网络在陶瓷显微图像分类中比原始网络准确率提高1.8%,达到98.6%,且网络参数只增加了0.11 m。该方法能以较小的代价有效对陶瓷碎片分类,辅助文物修复。