Microtubule catalyzes the mechanochemical cycle of kinesin,a kind of molecular motor,through its crucial roles in kinesin's gating,ATPase and force-generation process.These functions of microtubule are realized th...Microtubule catalyzes the mechanochemical cycle of kinesin,a kind of molecular motor,through its crucial roles in kinesin's gating,ATPase and force-generation process.These functions of microtubule are realized through the kinesin-microtubule interaction.The binding site of kinesin on the microtubule surface is fixed.For most of the kinesin-family members,the binding site on microtubule is in the groove betweenα-tubulin andβ-tubulin in a protofilament.The mechanism of kinesin searching for the appropriate binding site on microtubule is still unclear.Using the molecular dynamics simulation method,we investigate the interactions between kinesin-1 and the different binding positions on microtubule.The key non-bonded interactions between the motor domain and tubulins in kinesin's different nucleotide-binding states are listed.The differences of the amino-acid sequences betweenα-andβ-tubulins make kinesin-1 binding to theα–βgroove much more favorable than to theβ–αgroove.From these results,a two-step mechanism of kinesin-1 to discriminate the correct binding site on microtubule is proposed.Most of the kinesin-family members have the conserved motor domain and bind to the same site on microtubule,the mechanism may also be shared by other family members of kinesin.展开更多
How ATP binding initiates the docking process of kinesin's neck linker is a key question in understanding kinesin mechanisms. By exploiting a molecular dynamics method, we investigate the initial conformation of kine...How ATP binding initiates the docking process of kinesin's neck linker is a key question in understanding kinesin mechanisms. By exploiting a molecular dynamics method, we investigate the initial conformation of kinesin's neck linker in its docking process. We find that, in the initial conformation, the neck linker has interactions with /30 and forms a 'cover-neck bundle' structure with/30. From this initial structure, the formation of extra turns and the docking of the cover- neck bundle structure can be achieved. The motor head provides a forward force on the initial cover-neck bundle structure through ATP-induced rotation. This force, together with the hydrophobic interaction of ILE327 with the hydrophobic pocket on the motor head, drives the formation of the extra turn and initiates the neck linker docking process. Based on these findings, a pathway from ATP binding-induced motor head rotation to neck linker docking is proposed.展开更多
The neck linker (NL) docking to the motor domain is the key force generation process of a kinesin motor. In the initiation step of NL docking the first three residues (LYS325, THR326 and ILE327 in 2KIN) of the NL ...The neck linker (NL) docking to the motor domain is the key force generation process of a kinesin motor. In the initiation step of NL docking the first three residues (LYS325, THR326 and ILE327 in 2KIN) of the NL must form an 'extra turn', thus the other parts of the NL could dock to the motor domain. How the extra turn is formed remains elusive. We investigate the extra turn formation mechanism using structure-based mechanical analysis via molecular dynamics simulation. We find that the motor head rotation induced by ATP binding first drives ILE327 to move towards a hydrophobic pocket on the motor domain. The driving force, together with the hydrophobic interaction of ILE327 with the hydrophobic pocket, then causes a clockwise rotation of THR326, breaks the locking of LYS325, and finally drives the extra turn formation. This extra turn formation mechanism provides a clear pathway from ATP binding to NL docking of kinesin.展开更多
Docking of the kinesin's neck linker (NL) to the motor domain is the key force-generation process of the kinesin. In this process, NL'sβ10 portion forms four backbone hydrogen bonds (HBs) with the motor domain....Docking of the kinesin's neck linker (NL) to the motor domain is the key force-generation process of the kinesin. In this process, NL'sβ10 portion forms four backbone hydrogen bonds (HBs) with the motor domain. These backbone hydrogen bonds show big differences in their effective strength. The origins of these strength differences are still unclear. Using molecular dynamics method, we investigate the stability of the backbone HBs in explicit water environment. We find that the strength differences of these backbone HBs mainly arise from their relationships with water molecules which are controlled by arranging the surrounding residue sidechains. The arrangement of the residues in the C-terminal part of /310 results in the existence of the water-attack channels around the backbone HBs in this region. Along these channels the water molecules can directly attack the backbone HBs and make these HBs relatively weak. In contrast, the backbone HB at the N-terminus ofβ 10 is protected by the surrounding hydrophobic and hydrophilic residues which cooperate positively with the central backbone HB and make this HB highly strong. The intimate relationship between the effective strength of protein backbone HB and water revealed here should be considered when performing mechanical analysis for protein conformational changes.展开更多
Transient receptor potential vanilloid subtype 1 (TRPV1) is a polymodel sensory receptor and can be activated by moderate temperature (≥ 43 ℃). Though extensive researches on the heat-activation mechanism revealed s...Transient receptor potential vanilloid subtype 1 (TRPV1) is a polymodel sensory receptor and can be activated by moderate temperature (≥ 43 ℃). Though extensive researches on the heat-activation mechanism revealed some key elements that participate in the heat-sensation pathway, the detailed thermal-gating mechanism of TRPV1 is still unclear. We investigate the heat-activation process of TRPV1 channel using the molecular dynamics simulation method at different temperatures. It is found that the favored state of the supposed upper gate of TRPV1 cannot form constriction to ion permeation. Oscillation of S5 helix originated from thermal fluctuation and forming/breaking of two key hydrogen bonds can transmit to S6 helix through the hydrophobic contact between S5 and S6 helix. We propose that this is the pathway from heat sensor of TRPV1 to the opening of the lower gate. The heat-activation mechanism of TRPV1 presented in this work can help further functional study of TRPV1 channel.展开更多
The importance of stochasticity in cellular processes is increasingly recognized in both theoretical andexperimental studies.General features of stochasticity in gene regulation and expression are briefly reviewed in ...The importance of stochasticity in cellular processes is increasingly recognized in both theoretical andexperimental studies.General features of stochasticity in gene regulation and expression are briefly reviewed in thisarticle,which include the main experimental phenomena,classification,quantization and regulation of noises.Thecorrelation and transmission of noise in cascade networks are analyzed further and the stochastic simulation methodsthat can capture effects of intrinsic and extrinsic noise are described.展开更多
Covalent bonds arise from the overlap of the electronic clouds in the internucleus region, which is a pure quantum effect and cannot be obtained in any classical way. If the intermolecular interaction is of covalent c...Covalent bonds arise from the overlap of the electronic clouds in the internucleus region, which is a pure quantum effect and cannot be obtained in any classical way. If the intermolecular interaction is of covalent character, the result from direct applications of classical simulation methods to the molecular system would be questionable. Here, we analyze the special intermolecular interaction between two NO molecules based on quantum chemical calculation. This weak intermolecular interaction, which is of covalent character, is responsible for the formation of the NO dimer,(NO)2, in its most stable conformation, a cis conformation. The natural bond orbital(NBO) analysis gives an intuitive illustration of the formation of the dimer bonding and antibonding orbitals concomitant with the breaking of the πbonds with bond order 0.5of the monomers. The dimer bonding is counteracted by partially filling the antibonding dimer orbital and the repulsion between those fully or nearly fully occupied nonbonding dimer orbitals that make the dimer binding rather weak. The direct molecular mechanics(MM) calculation with the UFF force fields predicts a trans conformation as the most stable state, which contradicts the result of quantum mechanics(QM). The lesson from the investigation of this special system is that for the case where intermolecular interaction is of covalent character, a specific modification of the force fields of the molecular simulation method is necessary.展开更多
There have been many recent studies devoted to the consequences of stochasticity in protein circuitry. Stress conditions, including DNA damage, hypoxia, heat shock, nutrient deprivation, and oncogene activation, can r...There have been many recent studies devoted to the consequences of stochasticity in protein circuitry. Stress conditions, including DNA damage, hypoxia, heat shock, nutrient deprivation, and oncogene activation, can result in the activation and accumulation of p53. Several experimental studies show that oscillations can be induced by DNA damage following nuclear irradiation. To explore the underlying dynamical features and the role of stochasticity, we discuss the oscillatory dynamics in the well-studied regulatory network motif. The fluctuations around the fixed point of a delayed system are Gaussian in the limit of sufficiently weak delayed feedback, and remain Gaussian along a limit cycle when viewed tangential to the trajectory. The experimental results are recapitulated in this study. We illustrate several features of the p53 activities, which are robust when the parameters change. Furthermore, the distribution in protein abundance can be characterized by its non-Gaussian nature.展开更多
基金supported by the Natural Science Foundation of Hebei Province of China(Grant No.A2020202007)the National Natural Science Foundation of China(Grant No.11605038)。
文摘Microtubule catalyzes the mechanochemical cycle of kinesin,a kind of molecular motor,through its crucial roles in kinesin's gating,ATPase and force-generation process.These functions of microtubule are realized through the kinesin-microtubule interaction.The binding site of kinesin on the microtubule surface is fixed.For most of the kinesin-family members,the binding site on microtubule is in the groove betweenα-tubulin andβ-tubulin in a protofilament.The mechanism of kinesin searching for the appropriate binding site on microtubule is still unclear.Using the molecular dynamics simulation method,we investigate the interactions between kinesin-1 and the different binding positions on microtubule.The key non-bonded interactions between the motor domain and tubulins in kinesin's different nucleotide-binding states are listed.The differences of the amino-acid sequences betweenα-andβ-tubulins make kinesin-1 binding to theα–βgroove much more favorable than to theβ–αgroove.From these results,a two-step mechanism of kinesin-1 to discriminate the correct binding site on microtubule is proposed.Most of the kinesin-family members have the conserved motor domain and bind to the same site on microtubule,the mechanism may also be shared by other family members of kinesin.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10975044 and 10975019)the Foundation of the Ministry of Personnel of China for Returned Scholars(Grant No.MOP2006138)the Fundamental Research Funds for the Central University,and the Key Subject Construction Project of Hebei Provincial Universities
文摘How ATP binding initiates the docking process of kinesin's neck linker is a key question in understanding kinesin mechanisms. By exploiting a molecular dynamics method, we investigate the initial conformation of kinesin's neck linker in its docking process. We find that, in the initial conformation, the neck linker has interactions with /30 and forms a 'cover-neck bundle' structure with/30. From this initial structure, the formation of extra turns and the docking of the cover- neck bundle structure can be achieved. The motor head provides a forward force on the initial cover-neck bundle structure through ATP-induced rotation. This force, together with the hydrophobic interaction of ILE327 with the hydrophobic pocket on the motor head, drives the formation of the extra turn and initiates the neck linker docking process. Based on these findings, a pathway from ATP binding-induced motor head rotation to neck linker docking is proposed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11545014 and 11605038the Open Project Program of State Key Laboratory of Theoretical Physics of Institute of Theoretical Physics of Chinese Academy of Science under Grant No Y5KF211CJ1
文摘The neck linker (NL) docking to the motor domain is the key force generation process of a kinesin motor. In the initiation step of NL docking the first three residues (LYS325, THR326 and ILE327 in 2KIN) of the NL must form an 'extra turn', thus the other parts of the NL could dock to the motor domain. How the extra turn is formed remains elusive. We investigate the extra turn formation mechanism using structure-based mechanical analysis via molecular dynamics simulation. We find that the motor head rotation induced by ATP binding first drives ILE327 to move towards a hydrophobic pocket on the motor domain. The driving force, together with the hydrophobic interaction of ILE327 with the hydrophobic pocket, then causes a clockwise rotation of THR326, breaks the locking of LYS325, and finally drives the extra turn formation. This extra turn formation mechanism provides a clear pathway from ATP binding to NL docking of kinesin.
基金Project supported by the National Natural Science Foundation of China(Grant No.11605038)the Open Project Program of State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,China(Grant No.Y5KF211CJ1)
文摘Docking of the kinesin's neck linker (NL) to the motor domain is the key force-generation process of the kinesin. In this process, NL'sβ10 portion forms four backbone hydrogen bonds (HBs) with the motor domain. These backbone hydrogen bonds show big differences in their effective strength. The origins of these strength differences are still unclear. Using molecular dynamics method, we investigate the stability of the backbone HBs in explicit water environment. We find that the strength differences of these backbone HBs mainly arise from their relationships with water molecules which are controlled by arranging the surrounding residue sidechains. The arrangement of the residues in the C-terminal part of /310 results in the existence of the water-attack channels around the backbone HBs in this region. Along these channels the water molecules can directly attack the backbone HBs and make these HBs relatively weak. In contrast, the backbone HB at the N-terminus ofβ 10 is protected by the surrounding hydrophobic and hydrophilic residues which cooperate positively with the central backbone HB and make this HB highly strong. The intimate relationship between the effective strength of protein backbone HB and water revealed here should be considered when performing mechanical analysis for protein conformational changes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.81830061 and 11605038)the Natural Science Foundation of Hebei Province of China(Grant No.A2020202007)the Natural Science Foundation of Tianjin of China(Grant No.19JCYBJC28300).
文摘Transient receptor potential vanilloid subtype 1 (TRPV1) is a polymodel sensory receptor and can be activated by moderate temperature (≥ 43 ℃). Though extensive researches on the heat-activation mechanism revealed some key elements that participate in the heat-sensation pathway, the detailed thermal-gating mechanism of TRPV1 is still unclear. We investigate the heat-activation process of TRPV1 channel using the molecular dynamics simulation method at different temperatures. It is found that the favored state of the supposed upper gate of TRPV1 cannot form constriction to ion permeation. Oscillation of S5 helix originated from thermal fluctuation and forming/breaking of two key hydrogen bonds can transmit to S6 helix through the hydrophobic contact between S5 and S6 helix. We propose that this is the pathway from heat sensor of TRPV1 to the opening of the lower gate. The heat-activation mechanism of TRPV1 presented in this work can help further functional study of TRPV1 channel.
基金Supported by the Ministry of Science and Technology of China under Grant No. 2012CB934001the National Natural Science Foundation of China under Grant No. 10975019+1 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Personnel of China under Grant No. MOP2006138the Fundamental Research Funds for the Central Universities, and Y1515530U1
文摘The importance of stochasticity in cellular processes is increasingly recognized in both theoretical andexperimental studies.General features of stochasticity in gene regulation and expression are briefly reviewed in thisarticle,which include the main experimental phenomena,classification,quantization and regulation of noises.Thecorrelation and transmission of noise in cascade networks are analyzed further and the stochastic simulation methodsthat can capture effects of intrinsic and extrinsic noise are described.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.90403007 and 10975044)the Key Subject Construction Project of Hebei Provincial Universities,China+2 种基金the Research Project of Hebei Education Department,China(Grant Nos.Z2012067 and Z2011133)the National Natural Science Foundation of China(Grant No.11147103)the Open Project Program of State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,China(Grant No.Y5KF211CJ1)
文摘Covalent bonds arise from the overlap of the electronic clouds in the internucleus region, which is a pure quantum effect and cannot be obtained in any classical way. If the intermolecular interaction is of covalent character, the result from direct applications of classical simulation methods to the molecular system would be questionable. Here, we analyze the special intermolecular interaction between two NO molecules based on quantum chemical calculation. This weak intermolecular interaction, which is of covalent character, is responsible for the formation of the NO dimer,(NO)2, in its most stable conformation, a cis conformation. The natural bond orbital(NBO) analysis gives an intuitive illustration of the formation of the dimer bonding and antibonding orbitals concomitant with the breaking of the πbonds with bond order 0.5of the monomers. The dimer bonding is counteracted by partially filling the antibonding dimer orbital and the repulsion between those fully or nearly fully occupied nonbonding dimer orbitals that make the dimer binding rather weak. The direct molecular mechanics(MM) calculation with the UFF force fields predicts a trans conformation as the most stable state, which contradicts the result of quantum mechanics(QM). The lesson from the investigation of this special system is that for the case where intermolecular interaction is of covalent character, a specific modification of the force fields of the molecular simulation method is necessary.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10975019)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Personnel of China (Grant No. MOP2006138)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Science Foundation of the Ministry of Science and Technology of China (Grant No. 2012CB934001)
文摘There have been many recent studies devoted to the consequences of stochasticity in protein circuitry. Stress conditions, including DNA damage, hypoxia, heat shock, nutrient deprivation, and oncogene activation, can result in the activation and accumulation of p53. Several experimental studies show that oscillations can be induced by DNA damage following nuclear irradiation. To explore the underlying dynamical features and the role of stochasticity, we discuss the oscillatory dynamics in the well-studied regulatory network motif. The fluctuations around the fixed point of a delayed system are Gaussian in the limit of sufficiently weak delayed feedback, and remain Gaussian along a limit cycle when viewed tangential to the trajectory. The experimental results are recapitulated in this study. We illustrate several features of the p53 activities, which are robust when the parameters change. Furthermore, the distribution in protein abundance can be characterized by its non-Gaussian nature.