To suppress the strong noise in seismic data with wide range of amplitudes, commonly used methods often yield unsatisfactory denoising results owing to inappropriate thresholds and require parametric testing as well a...To suppress the strong noise in seismic data with wide range of amplitudes, commonly used methods often yield unsatisfactory denoising results owing to inappropriate thresholds and require parametric testing as well as iterations to achieve the anticipated results. To overcome these problems, a data-driven strong amplitude suppression method based on the decibel criterion in the wavelet domain (ISANA) is proposed. The method determines the denoising threshold based on the decibel criterion and statistically analyzes the amplitude index rather than the abnormally high amplitudes. The method distinguishes the frequency band distributions of the valid signals in the time-frequency domain based on the wavelet transformation and then calculates thresholds in selected time windows, eventually achieving frequency-divided noise attenuation for better denoising. Simulations based on theoretical and real-world data verify the adaptability and low dependence of the method on the size of the time window. The method suppresses noise without energy loss in the signals.展开更多
In the paper, we propose a surface wave suppression method in time-frequency domain based on the wavelet transform, considering the characteristic difference of polarization attributes, amplitude energy and apparent v...In the paper, we propose a surface wave suppression method in time-frequency domain based on the wavelet transform, considering the characteristic difference of polarization attributes, amplitude energy and apparent velocity between the effective signals and strong surface waves. First, we use the proposed method to obtain time-frequency spectra of seismic signals by using the wavelet transform and calculate the instantaneous polarizability at each point based on instantaneous polarization analysis. Then, we separate the surface wave area from the signal area based on the surface-wave apparent velocity and the average energy of the signal. Finally, we combine the polarizability, energy, and frequency characteristic to identify and suppress the signal noise. Model and field data are used to test the proposed filtering method.展开更多
基金supported by the National Science and Technology Major Project(No.2011ZX05002-004-002)the National Natural Science Foundation of China(No.41304111)+3 种基金Key Project of Science and Technology Department of Sichuan Province(No.2016JY0200)Natural Science project of Education Department of Sichuan Province(Nos.16ZB0101 and 14ZA0061)the Sichuan Provincial Youth Science&Technology Innovative Research Group Fund(No.2016TD0023)the Cultivating Program of Excellent Innovation Team of Chengdu University of Technology(No.KYTD201410)
文摘To suppress the strong noise in seismic data with wide range of amplitudes, commonly used methods often yield unsatisfactory denoising results owing to inappropriate thresholds and require parametric testing as well as iterations to achieve the anticipated results. To overcome these problems, a data-driven strong amplitude suppression method based on the decibel criterion in the wavelet domain (ISANA) is proposed. The method determines the denoising threshold based on the decibel criterion and statistically analyzes the amplitude index rather than the abnormally high amplitudes. The method distinguishes the frequency band distributions of the valid signals in the time-frequency domain based on the wavelet transformation and then calculates thresholds in selected time windows, eventually achieving frequency-divided noise attenuation for better denoising. Simulations based on theoretical and real-world data verify the adaptability and low dependence of the method on the size of the time window. The method suppresses noise without energy loss in the signals.
基金supported by the National Science and Technology Major Project(No.2011ZX05002-004-002)the National Natural Science Foundation of China(No.41304111 and 41704132)+3 种基金Key Project of Science&Technology Department of Sichuan Province(No.2016JY0200)Natural Science project of Education Department of Sichuan Province(Nos.17ZA0025,16ZB0101 and 18CZ0008)the Sichuan Provincial Youth Science&Technology Innovative Research Group Fund(No.2016TD0023)the Cultivating Program of Excellent Innovation Team of Chengdu University of Technology(No.KYTD201410)
文摘In the paper, we propose a surface wave suppression method in time-frequency domain based on the wavelet transform, considering the characteristic difference of polarization attributes, amplitude energy and apparent velocity between the effective signals and strong surface waves. First, we use the proposed method to obtain time-frequency spectra of seismic signals by using the wavelet transform and calculate the instantaneous polarizability at each point based on instantaneous polarization analysis. Then, we separate the surface wave area from the signal area based on the surface-wave apparent velocity and the average energy of the signal. Finally, we combine the polarizability, energy, and frequency characteristic to identify and suppress the signal noise. Model and field data are used to test the proposed filtering method.