期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于深度学习的容器化Flink上下游负载均衡策略研究 被引量:1
1
作者 艾力卡木·再比布拉 甄妞 +1 位作者 黄山 段晓东 《大连民族大学学报》 2023年第1期47-52,共6页
容器化部署Flink时,存在上下游算子的容器内存分配不均衡问题。提出基于深度学习的容器化Flink上下游负载均衡框架,使用CEEMDAN分解方法和BiLSTM相结合的预测方法预测Flink下游容器所需内存,并依据预测结果调整容器内存分配。实验证明:... 容器化部署Flink时,存在上下游算子的容器内存分配不均衡问题。提出基于深度学习的容器化Flink上下游负载均衡框架,使用CEEMDAN分解方法和BiLSTM相结合的预测方法预测Flink下游容器所需内存,并依据预测结果调整容器内存分配。实验证明:提出的上下游负载均衡策略可有效减少上游容器的等待时间,缓解下游容器的资源,计算效率提高约20%。 展开更多
关键词 Flink 容器负载预测 容器伸缩 深度学习
下载PDF
基于Flink的k-支配skyline体并行求解算法 被引量:1
2
作者 孙国璋 黄山 +2 位作者 艾力卡木·再比布拉 徐浩桐 段晓东 《计算机工程与科学》 CSCD 北大核心 2023年第1期17-27,共11页
k-支配skyline算法弱化了数据点之间的支配关系,更适合高维数据。k-支配skyline体适应于多名用户使用k-支配skyline算法查询,而现有的求解算法在时间效率和代码扩展性方面都有待提高。因此,提出了面向多用户的k-支配skyline体求解优化算... k-支配skyline算法弱化了数据点之间的支配关系,更适合高维数据。k-支配skyline体适应于多名用户使用k-支配skyline算法查询,而现有的求解算法在时间效率和代码扩展性方面都有待提高。因此,提出了面向多用户的k-支配skyline体求解优化算法MKSSOA,该算法对每名用户的候选集和中间集分别进行存储,同时在k-支配检查过程中利用2集合中数据点出现的先后次序将候选集中的非k-支配skyline点存储到对应用户的中间集中,以便下一名用户筛选使用,这样可以减少数据点之间的比较次数,避免重复计算,从而提升查询效率。同时,提出了面向多用户的k-支配skyline体并行求解算法MKSPSA,通过Apache Flink并行处理框架有效减少了数据点的比较时间。理论研究和实验结果显示,提出的算法具有较高的效率,能很好地处理多用户k-支配skyline问题。 展开更多
关键词 k-支配 SKYLINE查询 多用户 Apache Flink 并行查询
下载PDF
Flink水位线动态调整策略
3
作者 吕鹤轩 黄山 +2 位作者 艾力卡木·再比布拉 吴思衡 段晓东 《计算机工程与科学》 CSCD 北大核心 2023年第2期237-245,共9页
衡量大数据的数据挖掘性能有2个最重要的任务指标:一是实时性,二是准确性。流数据从数据产生到消息队列再通过数据源流入Flink进行计算,这个过程中因为网络传输速度不同,不同节点的计算性能不同等原因,流数据进入计算框架的先后顺序和... 衡量大数据的数据挖掘性能有2个最重要的任务指标:一是实时性,二是准确性。流数据从数据产生到消息队列再通过数据源流入Flink进行计算,这个过程中因为网络传输速度不同,不同节点的计算性能不同等原因,流数据进入计算框架的先后顺序和数据产生的事件时间顺序会有局部乱序的现象。面对窗口作业的传统水位线机制在不确定乱序程度的流数据情况下无法同时兼顾作业结果的实时性和准确性。针对这个问题,建立了流数据微簇模型。通过局部乱序度算法,根据流数据微簇的流数据事件时间局部乱序程度计算出可以代表当前时刻流数据的乱序度。设计了水位线动态调整策略,使水位线根据流数据的乱序程度动态调整大小。最后,在Apache Flink框架中对基于事件时间窗口的水位线动态调整策略进行了实现。实验结果表明,弹性或不确定乱序流数据条件下,基于事件时间窗口的水位线动态调整策略可以有效地同时兼顾窗口作业的准确性和实时性。 展开更多
关键词 Apache Flink 水位线 乱序流数据 事件时间
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部