针对工业缺陷对比度低、周围干扰信息多导致的误检率和漏检率高的问题,提出一种基于改进YOLOv8的工业表面缺陷检测算法EML-YOLO。通过设计一种高效大卷积模块(efficient large kernel,ELK),在保留空间信息的同时提供多尺度的特征表示,...针对工业缺陷对比度低、周围干扰信息多导致的误检率和漏检率高的问题,提出一种基于改进YOLOv8的工业表面缺陷检测算法EML-YOLO。通过设计一种高效大卷积模块(efficient large kernel,ELK),在保留空间信息的同时提供多尺度的特征表示,从而提高模型的特征提取能力;提出多支路并行的特征融合模块(multi-scale context module,MCM),使得模型能够获取丰富的特征信息和全局上下文信息;在Neck模块中通过特征压缩和精简来减少模型的参数量和计算量,让模型更适用于资源有限的工业场景。采用GC10-DET和DeepPCB两个工业表面缺陷数据集来验证改进的EML-YOLO算法的有效性。实验结果表明,在GC10-DET数据集和DeepPCB数据集上,检测准确率上分别提高了4.3个百分点和2.9个百分点,参数量仅2.7×10^(6)。所提算法可以较好地应用于工业缺陷检测场景。展开更多
针对目前基于信道脉冲响应(Channel Impulse Response,CIR)的非视距(None Line of Sight,NLoS)/视距(Line of Sight,LoS)识别方法精度低、泛化能力差的问题,提出了一种多层卷积神经网络(Convolutional Neural Network,CNN)与通道注意力...针对目前基于信道脉冲响应(Channel Impulse Response,CIR)的非视距(None Line of Sight,NLoS)/视距(Line of Sight,LoS)识别方法精度低、泛化能力差的问题,提出了一种多层卷积神经网络(Convolutional Neural Network,CNN)与通道注意力模块(Channel Attention Module,CAM)相结合的NLoS/LoS识别方法。在多层CNN中嵌入CAM提取原始CIR的时域数据特征,利用全局平均池化层代替全连接层进行特征整合并分类输出。使用欧洲地平线2020计划项目eWINE公开的数据集进行不同结构模型和不同识别方法的对比实验,结果表明,所提出的CNN-CAM模型LoS和NLoS召回率分别达到了92.29%与87.71%,准确率达到了90.00%,F1分数达到了90.22%。与现有多种传统识别方法相比,均具有更好的识别效果。展开更多
文摘针对工业缺陷对比度低、周围干扰信息多导致的误检率和漏检率高的问题,提出一种基于改进YOLOv8的工业表面缺陷检测算法EML-YOLO。通过设计一种高效大卷积模块(efficient large kernel,ELK),在保留空间信息的同时提供多尺度的特征表示,从而提高模型的特征提取能力;提出多支路并行的特征融合模块(multi-scale context module,MCM),使得模型能够获取丰富的特征信息和全局上下文信息;在Neck模块中通过特征压缩和精简来减少模型的参数量和计算量,让模型更适用于资源有限的工业场景。采用GC10-DET和DeepPCB两个工业表面缺陷数据集来验证改进的EML-YOLO算法的有效性。实验结果表明,在GC10-DET数据集和DeepPCB数据集上,检测准确率上分别提高了4.3个百分点和2.9个百分点,参数量仅2.7×10^(6)。所提算法可以较好地应用于工业缺陷检测场景。
文摘针对目前基于信道脉冲响应(Channel Impulse Response,CIR)的非视距(None Line of Sight,NLoS)/视距(Line of Sight,LoS)识别方法精度低、泛化能力差的问题,提出了一种多层卷积神经网络(Convolutional Neural Network,CNN)与通道注意力模块(Channel Attention Module,CAM)相结合的NLoS/LoS识别方法。在多层CNN中嵌入CAM提取原始CIR的时域数据特征,利用全局平均池化层代替全连接层进行特征整合并分类输出。使用欧洲地平线2020计划项目eWINE公开的数据集进行不同结构模型和不同识别方法的对比实验,结果表明,所提出的CNN-CAM模型LoS和NLoS召回率分别达到了92.29%与87.71%,准确率达到了90.00%,F1分数达到了90.22%。与现有多种传统识别方法相比,均具有更好的识别效果。