A new digital receiver with excellent performances has been designed and developed for solar radio observation,which can receive the radio signal from direct current(DC)to 9 GHz in the direct acquisition way.On the di...A new digital receiver with excellent performances has been designed and developed for solar radio observation,which can receive the radio signal from direct current(DC)to 9 GHz in the direct acquisition way.On the digital receiver,the analog-to-digital converter(ADC)with 14-bit,two input channels and 3 Giga Samples per second(Gsps)are used to acquire observed signal,and the field-programmable-gate-array chip XCKU115 acts as the processing module.The new digital receiver can be used to directly sample the solar radio signals of frequency under 9 GHz.When receiving the solar radio signal above 9 GHz,the new digital receiver can save 1–2 stages of frequency down-conversion,and effectively improve many indexes of the solar radio observation system,i.e.,the time resolution,analog front-end circuit,weight and volume of the analog circuit system.Compared with the digital receiver with sampling rate below 1 Gsps used in existing solar radio telescope,the new digital receiver reduces the frequency switching times of large bandwidth,which is beneficial to improving the frequency and time resolutions.The ADC sampling resolution of 14 bits,providing a large dynamic range,is very beneficial to observing smaller solar eruptions.This receiver,which would be used in the solar radio observation system,well meets the latest requirements with the resolutions of time(≤1 ms)and frequency(≤0.5 MHz)for fine observation of radio signals.展开更多
Friction torque severely weakens the tracking accuracy and low-speed stability of an m-level TCS(telescope control system).To solve this problem,a friction compensation method is proposed,based on high-precision LuGre...Friction torque severely weakens the tracking accuracy and low-speed stability of an m-level TCS(telescope control system).To solve this problem,a friction compensation method is proposed,based on high-precision LuGre friction model parameters identification.Together with dynamometer calibration,we first design a DOB(disturbance observer)to acquire high-accuracy TCS friction value in real time.Then,the PSO-GA(a hybrid algorithm combined particle swarm optimization algorithm and genetic algorithm)optimization algorithm proposed effectively and efficiently realizes the LuGre model parameters identification.In addition,we design a TCS controller including DOB and LuGre model parameters identification based on double-loop PID controller for practical application.Engineering verification tests indicate that the accuracy of DOB calibrated can reach 96.94%of the real measured friction.When azimuth axis operates in the speed cross-zero work mode,the average positive peak to tracking error reduces from 0.8926"to 0.2252"and the absolute average negative peak to tracking error reduces from 0.8881"to 0.3984".Moreover,the azimuth axis tracking MSE reduces from 0.1155"to 0.0737",which decreases by 36.2%.Experimental results validate the high precision,facile portability and high real-time ability of our approach.展开更多
基金the National Natural Science Foundation of China(grant Nos.42127804,41774180 and 41904158)Shandong postdoctoral innovation project(202002004)Young Scholars Program of Shandong University,Weihai(208220201005)。
文摘A new digital receiver with excellent performances has been designed and developed for solar radio observation,which can receive the radio signal from direct current(DC)to 9 GHz in the direct acquisition way.On the digital receiver,the analog-to-digital converter(ADC)with 14-bit,two input channels and 3 Giga Samples per second(Gsps)are used to acquire observed signal,and the field-programmable-gate-array chip XCKU115 acts as the processing module.The new digital receiver can be used to directly sample the solar radio signals of frequency under 9 GHz.When receiving the solar radio signal above 9 GHz,the new digital receiver can save 1–2 stages of frequency down-conversion,and effectively improve many indexes of the solar radio observation system,i.e.,the time resolution,analog front-end circuit,weight and volume of the analog circuit system.Compared with the digital receiver with sampling rate below 1 Gsps used in existing solar radio telescope,the new digital receiver reduces the frequency switching times of large bandwidth,which is beneficial to improving the frequency and time resolutions.The ADC sampling resolution of 14 bits,providing a large dynamic range,is very beneficial to observing smaller solar eruptions.This receiver,which would be used in the solar radio observation system,well meets the latest requirements with the resolutions of time(≤1 ms)and frequency(≤0.5 MHz)for fine observation of radio signals.
基金the National Natural Science Foundation of China(NSFC)under Nos.11803017,41904158,and 41774180the China Postdoctoral Science Foundation under 2019M652385+2 种基金the Open Research Program of the CAS Key Laboratory of Solar Activity under KLSA201907the National Astronomical ObservatoriesYoung Scholars Program of Shandong University,Weihai(20820201005)。
文摘Friction torque severely weakens the tracking accuracy and low-speed stability of an m-level TCS(telescope control system).To solve this problem,a friction compensation method is proposed,based on high-precision LuGre friction model parameters identification.Together with dynamometer calibration,we first design a DOB(disturbance observer)to acquire high-accuracy TCS friction value in real time.Then,the PSO-GA(a hybrid algorithm combined particle swarm optimization algorithm and genetic algorithm)optimization algorithm proposed effectively and efficiently realizes the LuGre model parameters identification.In addition,we design a TCS controller including DOB and LuGre model parameters identification based on double-loop PID controller for practical application.Engineering verification tests indicate that the accuracy of DOB calibrated can reach 96.94%of the real measured friction.When azimuth axis operates in the speed cross-zero work mode,the average positive peak to tracking error reduces from 0.8926"to 0.2252"and the absolute average negative peak to tracking error reduces from 0.8881"to 0.3984".Moreover,the azimuth axis tracking MSE reduces from 0.1155"to 0.0737",which decreases by 36.2%.Experimental results validate the high precision,facile portability and high real-time ability of our approach.