基于自组织抗体网络(so Ab Net)的变压器故障诊断方法中没有网络压缩机制,并且网络的初始抗体是随机选取的,网络性能不稳定。针对这一问题,提出了基于互补免疫算法的变压器故障诊断方法,结合变压器故障诊断的特点详细设计了免疫算子以弥...基于自组织抗体网络(so Ab Net)的变压器故障诊断方法中没有网络压缩机制,并且网络的初始抗体是随机选取的,网络性能不稳定。针对这一问题,提出了基于互补免疫算法的变压器故障诊断方法,结合变压器故障诊断的特点详细设计了免疫算子以弥补so Ab Net的不足。免疫算子中接种疫苗利用K-means最佳聚类算法为so Ab Net提供初始抗体,并通过免疫选择压缩网络规模,其参数由粒子群算法进行优化。变压器故障诊断实验结果表明,所提出的互补免疫算法能够充分利用系统的先验知识,并有效地提取故障样本的数据特征,与单一智能方法相比具有更高的诊断准确率。展开更多
把向量作为空间中的物体展开相似度的评估,分析了向量间各维差值与形状差异的间的近似关系,提出了基于形状相似距离的K-means算法。在三个UCI(University of California,Irvine)标准数据集上的聚类结果表明,对于有关形状信息的数据,基...把向量作为空间中的物体展开相似度的评估,分析了向量间各维差值与形状差异的间的近似关系,提出了基于形状相似距离的K-means算法。在三个UCI(University of California,Irvine)标准数据集上的聚类结果表明,对于有关形状信息的数据,基于形状相似距离的K-means算法比采用传统距离的K-means算法,聚类准确度显著提高。展开更多
文摘基于自组织抗体网络(so Ab Net)的变压器故障诊断方法中没有网络压缩机制,并且网络的初始抗体是随机选取的,网络性能不稳定。针对这一问题,提出了基于互补免疫算法的变压器故障诊断方法,结合变压器故障诊断的特点详细设计了免疫算子以弥补so Ab Net的不足。免疫算子中接种疫苗利用K-means最佳聚类算法为so Ab Net提供初始抗体,并通过免疫选择压缩网络规模,其参数由粒子群算法进行优化。变压器故障诊断实验结果表明,所提出的互补免疫算法能够充分利用系统的先验知识,并有效地提取故障样本的数据特征,与单一智能方法相比具有更高的诊断准确率。
文摘把向量作为空间中的物体展开相似度的评估,分析了向量间各维差值与形状差异的间的近似关系,提出了基于形状相似距离的K-means算法。在三个UCI(University of California,Irvine)标准数据集上的聚类结果表明,对于有关形状信息的数据,基于形状相似距离的K-means算法比采用传统距离的K-means算法,聚类准确度显著提高。