Lee–Yang theory clearly demonstrates where the phase transition of many-body systems occurs and the asymptotic behavior near the phase transition using the partition function under complex parameters. The complex par...Lee–Yang theory clearly demonstrates where the phase transition of many-body systems occurs and the asymptotic behavior near the phase transition using the partition function under complex parameters. The complex parameters make the direct investigation of Lee–Yang theory in practical systems challenging. Here we construct a non-Hermitian quantum system that can correspond to the one-dimensional Ising model with imaginary parameters through the equality of partition functions. By adjusting the non-Hermitian parameter,we successfully obtain the partition function under different imaginary magnetic fields and observe the Lee–Yang zeros. We also observe the critical behavior of free energy in vicinity of Lee–Yang zero that is consistent with theoretical prediction. Our work provides a protocol to study Lee–Yang zeros of the one-dimensional Ising model using a single-qubit non-Hermitian system.展开更多
基金supported by the National Key R&D Program of China (Grant No. 2021YFB3202800)the National Natural Science Foundation of China (Grant No. 12174373)+2 种基金the Chinese Academy of Sciences (Grant No. GJJSTD20200001)the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302200)Anhui Initiative in Quantum Information Technologies (Grant No. AHY050000)。
文摘Lee–Yang theory clearly demonstrates where the phase transition of many-body systems occurs and the asymptotic behavior near the phase transition using the partition function under complex parameters. The complex parameters make the direct investigation of Lee–Yang theory in practical systems challenging. Here we construct a non-Hermitian quantum system that can correspond to the one-dimensional Ising model with imaginary parameters through the equality of partition functions. By adjusting the non-Hermitian parameter,we successfully obtain the partition function under different imaginary magnetic fields and observe the Lee–Yang zeros. We also observe the critical behavior of free energy in vicinity of Lee–Yang zero that is consistent with theoretical prediction. Our work provides a protocol to study Lee–Yang zeros of the one-dimensional Ising model using a single-qubit non-Hermitian system.
基金supported by the Chinese Academy of Sciences (XDC07000000, GJJSTD20200001, QYZDB-SSWSLH005)Innovation Program for Quantum Science and Technology (2021ZD0302200)+4 种基金the National Key R&D Program of China (2018YFA0306600)Anhui Initiative in Quantum Information Technologies (AHY050000)Hefei Comprehensive National Science Centerand the Fundamental Research Funds for the Central Universitiesthe Youth Innovation Promotion Association of C hinese Academy of Sciences for the support