针对基于l1范数约束的稀疏表示DOA(Direction Of Arrival)估计算法对初始参数较为敏感的问题,提出了一种基于稀疏贝叶斯学习的DOA估计算法。首先通过信号来波方向的空间采样构造冗余字典,将阵列信号处理中的DOA估计信号模型转化为压缩...针对基于l1范数约束的稀疏表示DOA(Direction Of Arrival)估计算法对初始参数较为敏感的问题,提出了一种基于稀疏贝叶斯学习的DOA估计算法。首先通过信号来波方向的空间采样构造冗余字典,将阵列信号处理中的DOA估计信号模型转化为压缩感知中的稀疏重构信号模型。然后基于经验贝叶斯推理的方法,将待估计的稀疏系数值用方差未知的联合高斯分布描述,而未知的方差值决定了待估计系数的稀疏性。通过观测数据估计得到未知的方差,进而得到信号的DOA估计值。仿真结果表明,提出的算法有较高估计精度,并且对非相干信源和相干信源都具有较好的估计性能。展开更多
文摘针对基于l1范数约束的稀疏表示DOA(Direction Of Arrival)估计算法对初始参数较为敏感的问题,提出了一种基于稀疏贝叶斯学习的DOA估计算法。首先通过信号来波方向的空间采样构造冗余字典,将阵列信号处理中的DOA估计信号模型转化为压缩感知中的稀疏重构信号模型。然后基于经验贝叶斯推理的方法,将待估计的稀疏系数值用方差未知的联合高斯分布描述,而未知的方差值决定了待估计系数的稀疏性。通过观测数据估计得到未知的方差,进而得到信号的DOA估计值。仿真结果表明,提出的算法有较高估计精度,并且对非相干信源和相干信源都具有较好的估计性能。