针对原始灰狼优化(Grey Wolf Optimization,GWO)算法在寻优过程中存在求解精度欠佳,后期极易陷入局部最优和收敛速度下降等多种问题,文章研究了改进的灰狼优化(Improve Grey Wolf Optimization,IGWO)算法。改进算法从改变参数和搜寻机...针对原始灰狼优化(Grey Wolf Optimization,GWO)算法在寻优过程中存在求解精度欠佳,后期极易陷入局部最优和收敛速度下降等多种问题,文章研究了改进的灰狼优化(Improve Grey Wolf Optimization,IGWO)算法。改进算法从改变参数和搜寻机制入手,采用对灰狼当前最优个体进行混沌扰动的初始化策略和随机控制当前不处于最优解范围个体的跳出局部最优策略,以提高其收敛速度和寻优精度。为验证算法实用性,文章采取9种基准函数测试IGWO算法的可行性,数据结果分析表明,该算法能够明显提高收敛速度和收敛精度,且效果均显著优于其他元启发式算法以及原始的GWO算法,可见在求解最优参数方面,IGWO算法具有较高的应用价值。展开更多
针对测量数据中粗差干扰及高程异常拟合方法选择较为困难的问题,结合格拉布斯(Grubbs)法判别粗差的原理,提出一种改进格拉布斯(Improved Grubbs,IGrubbs)结合局部加权线性回归(Local Weighted Linear Regression,LWLR)的拟合模型构建法...针对测量数据中粗差干扰及高程异常拟合方法选择较为困难的问题,结合格拉布斯(Grubbs)法判别粗差的原理,提出一种改进格拉布斯(Improved Grubbs,IGrubbs)结合局部加权线性回归(Local Weighted Linear Regression,LWLR)的拟合模型构建法。在原Grubbs法则的基础上,引入自适应迭代,在训练数据中,对粗差进行识别,并设定粗差剔除完成的指标参数,从而降低原方法中发生误判或漏判的概率,并利用局部加权线性回归法通过预处理后的训练样本数据来建立区域高程异常拟合模型。实验结果表明,相较于传统Grubbs法则,改进后的Grubbs法对于高程异常数据中的粗差剔除更为快速有效,且利用局部加权线性回归法所构建的区域高程异常拟合模型的预测精度及稳定性也得到一定程度的提高,对今后工程中的测高工作具备一定的参考意义。展开更多
针对机载激光雷达建筑物点云提取过程中自动化提取困难,以及提取后的建筑物单体化过程烦琐等问题,提出一种基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的机载雷达建筑物点云提...针对机载激光雷达建筑物点云提取过程中自动化提取困难,以及提取后的建筑物单体化过程烦琐等问题,提出一种基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的机载雷达建筑物点云提取与单体化的方法。该方法对预处理后的点云数据基于DBSCAN算法进行去噪与初步的提取,通过三维密度聚类,将建筑物的点云进行提取与自动单体化。根据建筑物点云密度的特点,进行二维的密度聚类,结合数字正射影像图(digital orthophoto map,DOM)进行点云分割。最后将处理后的点云数据进行优化处理,并将建筑物单体化簇类进行提取,得到单体化建筑物点云。结果表明:提取的建筑物点云数量正确率为97.36%,轮廓边长的中误差为0.077,可以有效地提取出建筑物点云并将其单体化。展开更多
文摘针对原始灰狼优化(Grey Wolf Optimization,GWO)算法在寻优过程中存在求解精度欠佳,后期极易陷入局部最优和收敛速度下降等多种问题,文章研究了改进的灰狼优化(Improve Grey Wolf Optimization,IGWO)算法。改进算法从改变参数和搜寻机制入手,采用对灰狼当前最优个体进行混沌扰动的初始化策略和随机控制当前不处于最优解范围个体的跳出局部最优策略,以提高其收敛速度和寻优精度。为验证算法实用性,文章采取9种基准函数测试IGWO算法的可行性,数据结果分析表明,该算法能够明显提高收敛速度和收敛精度,且效果均显著优于其他元启发式算法以及原始的GWO算法,可见在求解最优参数方面,IGWO算法具有较高的应用价值。
文摘针对测量数据中粗差干扰及高程异常拟合方法选择较为困难的问题,结合格拉布斯(Grubbs)法判别粗差的原理,提出一种改进格拉布斯(Improved Grubbs,IGrubbs)结合局部加权线性回归(Local Weighted Linear Regression,LWLR)的拟合模型构建法。在原Grubbs法则的基础上,引入自适应迭代,在训练数据中,对粗差进行识别,并设定粗差剔除完成的指标参数,从而降低原方法中发生误判或漏判的概率,并利用局部加权线性回归法通过预处理后的训练样本数据来建立区域高程异常拟合模型。实验结果表明,相较于传统Grubbs法则,改进后的Grubbs法对于高程异常数据中的粗差剔除更为快速有效,且利用局部加权线性回归法所构建的区域高程异常拟合模型的预测精度及稳定性也得到一定程度的提高,对今后工程中的测高工作具备一定的参考意义。
文摘针对机载激光雷达建筑物点云提取过程中自动化提取困难,以及提取后的建筑物单体化过程烦琐等问题,提出一种基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的机载雷达建筑物点云提取与单体化的方法。该方法对预处理后的点云数据基于DBSCAN算法进行去噪与初步的提取,通过三维密度聚类,将建筑物的点云进行提取与自动单体化。根据建筑物点云密度的特点,进行二维的密度聚类,结合数字正射影像图(digital orthophoto map,DOM)进行点云分割。最后将处理后的点云数据进行优化处理,并将建筑物单体化簇类进行提取,得到单体化建筑物点云。结果表明:提取的建筑物点云数量正确率为97.36%,轮廓边长的中误差为0.077,可以有效地提取出建筑物点云并将其单体化。