为了消除高光谱遥感图像中光谱曲线的锯齿型噪声,提高利用光谱曲线进行信息提取研究时的精度,文章使用USGS(united states geological survey)光谱库中的植被光谱进行模拟,添加了信噪比为30的噪声后采用小波阈值法进行噪声去除,...为了消除高光谱遥感图像中光谱曲线的锯齿型噪声,提高利用光谱曲线进行信息提取研究时的精度,文章使用USGS(united states geological survey)光谱库中的植被光谱进行模拟,添加了信噪比为30的噪声后采用小波阈值法进行噪声去除,并利用信噪比、均方误差和光谱角三项指标以及综合评估系数η来对去噪效果进行评估,寻找出最佳的参数组合。实验表明,使用db12,db10,sym9,sym6等小波对含噪光谱进行3~7层分解,采用软阈值函数处理小波变换系数并使用Heursure阈值方案进行阈值估计,然后根据第一层小波分解的噪声水平估计进行阈值调整可以得到满意的去噪效果。不过该方法对噪声水平有一定的依赖性,针对不同噪声水平时需探索更合适的参数组合。展开更多
文摘为了消除高光谱遥感图像中光谱曲线的锯齿型噪声,提高利用光谱曲线进行信息提取研究时的精度,文章使用USGS(united states geological survey)光谱库中的植被光谱进行模拟,添加了信噪比为30的噪声后采用小波阈值法进行噪声去除,并利用信噪比、均方误差和光谱角三项指标以及综合评估系数η来对去噪效果进行评估,寻找出最佳的参数组合。实验表明,使用db12,db10,sym9,sym6等小波对含噪光谱进行3~7层分解,采用软阈值函数处理小波变换系数并使用Heursure阈值方案进行阈值估计,然后根据第一层小波分解的噪声水平估计进行阈值调整可以得到满意的去噪效果。不过该方法对噪声水平有一定的依赖性,针对不同噪声水平时需探索更合适的参数组合。