Low pressure argon dual-frequency (DF) capacitively coupled plasma (CCP) is generated by using different frequency configurations, such as 13.56/2, 27/2, 41/2, and 60/2 MHz. Characteristics of the plasma are inves...Low pressure argon dual-frequency (DF) capacitively coupled plasma (CCP) is generated by using different frequency configurations, such as 13.56/2, 27/2, 41/2, and 60/2 MHz. Characteristics of the plasma are investigated by using a floating double electrical probe and optical emission spectroscopy (OES). It is shown that in the DF-CCPs, the electron temperature Te decreases with the increase in exciting frequency, while the onset of 2 MHz induces a sudden increase in Te and the electron density increases basically with the increase in low frequency (LF) power. The intensity of 750.4 nm emission line increases with the LF power in the case of 13.56/2 MHz, while different tendencies of line intensity with the LF power appear for other configurations. The reason for this is also discussed.展开更多
This paper proposes a simple collisional-radiative model to characterise capacitively coupled argon plasmas driven by conventional radio frequency in combination with optical emission spectroscopy and Langmuir probe m...This paper proposes a simple collisional-radiative model to characterise capacitively coupled argon plasmas driven by conventional radio frequency in combination with optical emission spectroscopy and Langmuir probe measurements. Two major processes are considered in this model, electron-impact excitation and the spontaneous radiative decay. The diffusion loss term, which is found to be important for the two metastable states (4s[3/2]2, 4s'[1/2]0), is also taken into account. Behaviours of representative metastable and radiative states are discussed. Two emission lines (located at 696.5 nm and 750.4 nm) are selected and intensities are measured to obtain populated densities of the corresponding radiative states in the argon plasma. The calculated results agree well with that measured by Langmuir probe, indicating that the current model combined with optical emission spectroscopy is a candidate tool for electron density and temperature measurement in radio frequency capacitively coupled discharges.展开更多
Nitrogen dual-frequency capacitively coupled plasmas (DF-CCPs) with different fre- quency configurations, i.e., 60/2 MHz and 60/13.56 MHz, are investigated by means of opticM emission spectroscopy (OES) and a floa...Nitrogen dual-frequency capacitively coupled plasmas (DF-CCPs) with different fre- quency configurations, i.e., 60/2 MHz and 60/13.56 MHz, are investigated by means of opticM emission spectroscopy (OES) and a floating double probe. The excited nitrogen molecule ion N+(B) is monitored by measuring the emission intensity of the (0,0) bandhead of the first neg- ative system (FNS) at 391.44 nm. It is shown that in the discharge with 60/13.56 MHz, the N+ emission intensity decreases with the increase in pressure. In the discharge with 60/2 MHz, however, an abnormal enhancement of N+ emission at higher pressure is observed when a higher power of 2 MHz is added. Variation in the ion density shows a similar dependence on the gas pressure. This indicates that in the discharge with 60/2 MHz there is a mode transition from the alpha to gamma type when a higher power of 2 MHz is added at high pressures. Combining the measurements using OES and double probe, the influence of low frequency on the discharge is investigated and the excitation route of the N+(B) state in the discharge of 60/2 MHz is also discussed.展开更多
Diamond-like carbon (DLC) films were prepared with CH4-Ar using a capacitively coupled plasma enhanced chemical vapor deposition (CCP-CVD) method driven by dual-frequency of 41 MHz and 13.56 MHz in combination. Du...Diamond-like carbon (DLC) films were prepared with CH4-Ar using a capacitively coupled plasma enhanced chemical vapor deposition (CCP-CVD) method driven by dual-frequency of 41 MHz and 13.56 MHz in combination. Due to a coupling via bulk plasma, the self-bias voltage depended not only on the radiofrequency (RF) power of the corresponding electrode but also on another RF power of the counter electrode. The influence of the discharge parameters on the deposition rate, optical and Raman properties of the deposited films was investigated. The optical band decreased basically with the increase in the input power of both the low frequency and high frequency. Raman measurements show that the deposited films have a maximal sp3 content with an applied negative self-bias voltage of -150 V, while high frequency power causes a continuous increase in the sp3 content. The measurement of atomic force microscope (AFM) shows that the surface of the deposited films under ion-bombardment becomes smoother than those with non-intended self-bias voltage.展开更多
The effect of gas pressure on ion energy distribution at the substrate side of Ag target radio-frequency(RF)and very-high-frequency(VHF)magnetron sputtering discharge was investigated.At lower pressure,the evolution o...The effect of gas pressure on ion energy distribution at the substrate side of Ag target radio-frequency(RF)and very-high-frequency(VHF)magnetron sputtering discharge was investigated.At lower pressure,the evolution of maximum ion energy(E)with discharge voltage(V)varied with the excitation frequency,due to the joint contribution of the ion generation in the bulk plasma and the ion movement across the sheath related to the ion transit sheath timeτiand RF periodτRF.At higher pressure,the evolution of E–V relationships did not vary with the excitation frequency,due to the balance between the energy lost through collisions and the energy gained by acceleration in the electric field.Therefore,for RF and VHF magnetron discharge,lower gas pressure can have a clear influence on the E–V relationship.展开更多
基金supported by National Natural Science Foundation of China (Nos. 10635010, 10775103)
文摘Low pressure argon dual-frequency (DF) capacitively coupled plasma (CCP) is generated by using different frequency configurations, such as 13.56/2, 27/2, 41/2, and 60/2 MHz. Characteristics of the plasma are investigated by using a floating double electrical probe and optical emission spectroscopy (OES). It is shown that in the DF-CCPs, the electron temperature Te decreases with the increase in exciting frequency, while the onset of 2 MHz induces a sudden increase in Te and the electron density increases basically with the increase in low frequency (LF) power. The intensity of 750.4 nm emission line increases with the LF power in the case of 13.56/2 MHz, while different tendencies of line intensity with the LF power appear for other configurations. The reason for this is also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10635010 and 10775103)
文摘This paper proposes a simple collisional-radiative model to characterise capacitively coupled argon plasmas driven by conventional radio frequency in combination with optical emission spectroscopy and Langmuir probe measurements. Two major processes are considered in this model, electron-impact excitation and the spontaneous radiative decay. The diffusion loss term, which is found to be important for the two metastable states (4s[3/2]2, 4s'[1/2]0), is also taken into account. Behaviours of representative metastable and radiative states are discussed. Two emission lines (located at 696.5 nm and 750.4 nm) are selected and intensities are measured to obtain populated densities of the corresponding radiative states in the argon plasma. The calculated results agree well with that measured by Langmuir probe, indicating that the current model combined with optical emission spectroscopy is a candidate tool for electron density and temperature measurement in radio frequency capacitively coupled discharges.
基金supported by National Natural Science Foundation of China (Nos.10635010, 10775103)
文摘Nitrogen dual-frequency capacitively coupled plasmas (DF-CCPs) with different fre- quency configurations, i.e., 60/2 MHz and 60/13.56 MHz, are investigated by means of opticM emission spectroscopy (OES) and a floating double probe. The excited nitrogen molecule ion N+(B) is monitored by measuring the emission intensity of the (0,0) bandhead of the first neg- ative system (FNS) at 391.44 nm. It is shown that in the discharge with 60/13.56 MHz, the N+ emission intensity decreases with the increase in pressure. In the discharge with 60/2 MHz, however, an abnormal enhancement of N+ emission at higher pressure is observed when a higher power of 2 MHz is added. Variation in the ion density shows a similar dependence on the gas pressure. This indicates that in the discharge with 60/2 MHz there is a mode transition from the alpha to gamma type when a higher power of 2 MHz is added at high pressures. Combining the measurements using OES and double probe, the influence of low frequency on the discharge is investigated and the excitation route of the N+(B) state in the discharge of 60/2 MHz is also discussed.
基金supported by National Natural Science Foundation of China (No. 10775103)
文摘Diamond-like carbon (DLC) films were prepared with CH4-Ar using a capacitively coupled plasma enhanced chemical vapor deposition (CCP-CVD) method driven by dual-frequency of 41 MHz and 13.56 MHz in combination. Due to a coupling via bulk plasma, the self-bias voltage depended not only on the radiofrequency (RF) power of the corresponding electrode but also on another RF power of the counter electrode. The influence of the discharge parameters on the deposition rate, optical and Raman properties of the deposited films was investigated. The optical band decreased basically with the increase in the input power of both the low frequency and high frequency. Raman measurements show that the deposited films have a maximal sp3 content with an applied negative self-bias voltage of -150 V, while high frequency power causes a continuous increase in the sp3 content. The measurement of atomic force microscope (AFM) shows that the surface of the deposited films under ion-bombardment becomes smoother than those with non-intended self-bias voltage.
基金supported by National Natural Science Foundation of China(No.11275136)。
文摘The effect of gas pressure on ion energy distribution at the substrate side of Ag target radio-frequency(RF)and very-high-frequency(VHF)magnetron sputtering discharge was investigated.At lower pressure,the evolution of maximum ion energy(E)with discharge voltage(V)varied with the excitation frequency,due to the joint contribution of the ion generation in the bulk plasma and the ion movement across the sheath related to the ion transit sheath timeτiand RF periodτRF.At higher pressure,the evolution of E–V relationships did not vary with the excitation frequency,due to the balance between the energy lost through collisions and the energy gained by acceleration in the electric field.Therefore,for RF and VHF magnetron discharge,lower gas pressure can have a clear influence on the E–V relationship.