Applying an ultrafast vortex laser as the pump,optical parametric amplification can be used for spiral phase-contrast imaging with high gain,wide spatial bandwidth,and high imaging contrast.Our experiments show that t...Applying an ultrafast vortex laser as the pump,optical parametric amplification can be used for spiral phase-contrast imaging with high gain,wide spatial bandwidth,and high imaging contrast.Our experiments show that this design has realized the 1064 nm spiral phase-contrast idler imaging of biological tissues(frog egg cells and onion epidermis)with a spatial resolution at several microns level and a superior imaging contrast to both the traditional bright-or dark-field imaging under a weak illumination of 7 nW/cm^(2).This work provides a powerful way for biological tissue imaging in the second near-infrared region.展开更多
基金partially supported by the National Natural Science Foundation of China(Nos.92050203,62075138,12174264,61827815,12004261,and 61775142)Natural Science Foundation of Guangdong Province(Nos.2021A1515011909 and 2022A1515011457)+1 种基金Shenzhen Fundamental Research Program(Nos.JCYJ20200109105606426,JCYJ20190808164007485,JCYJ20210324095213037,JCYJ20190808121817100,JCYJ20190808143419622,and JCYJ20190808115601653)Shenzhen Key Technology Projects(Nos.JSGG20191231144201722 and JSGG20211108092800001).
文摘Applying an ultrafast vortex laser as the pump,optical parametric amplification can be used for spiral phase-contrast imaging with high gain,wide spatial bandwidth,and high imaging contrast.Our experiments show that this design has realized the 1064 nm spiral phase-contrast idler imaging of biological tissues(frog egg cells and onion epidermis)with a spatial resolution at several microns level and a superior imaging contrast to both the traditional bright-or dark-field imaging under a weak illumination of 7 nW/cm^(2).This work provides a powerful way for biological tissue imaging in the second near-infrared region.