变压器作为电力系统的关键设备,其绕组松动状态的识别对电网的稳定运行具有重要意义。针对传统监测方法环境干扰较大、应用复杂等问题,提出了使用两类不同的布拉格光纤光栅(Fiber bragg grating,FBG)传感器采集变压器绕组关键测点温度...变压器作为电力系统的关键设备,其绕组松动状态的识别对电网的稳定运行具有重要意义。针对传统监测方法环境干扰较大、应用复杂等问题,提出了使用两类不同的布拉格光纤光栅(Fiber bragg grating,FBG)传感器采集变压器绕组关键测点温度与应变信号,经快速解耦与自适应噪声完备集合经验模态分解后(Fast decoupling and complete ensemble empirical mode decomposition with adaptive noise,DECE),提取关键参数并进行主元分析(Principal component analysis,PCA)。对降维后的特征采用基于黑洞优化的支持向量机(Support vector machine based on black hole optimization,BHOSVM)进行分类,实现对变压器绕组径向松动状态的监测与定位。诊断结果表明,所提诊断方法对变压器绕组径向松动状态的识别准确率达到96.8%。展开更多
文摘变压器作为电力系统的关键设备,其绕组松动状态的识别对电网的稳定运行具有重要意义。针对传统监测方法环境干扰较大、应用复杂等问题,提出了使用两类不同的布拉格光纤光栅(Fiber bragg grating,FBG)传感器采集变压器绕组关键测点温度与应变信号,经快速解耦与自适应噪声完备集合经验模态分解后(Fast decoupling and complete ensemble empirical mode decomposition with adaptive noise,DECE),提取关键参数并进行主元分析(Principal component analysis,PCA)。对降维后的特征采用基于黑洞优化的支持向量机(Support vector machine based on black hole optimization,BHOSVM)进行分类,实现对变压器绕组径向松动状态的监测与定位。诊断结果表明,所提诊断方法对变压器绕组径向松动状态的识别准确率达到96.8%。