This paper studies the effect of adaptive cruise control (ACC) system on traffic flow by using simulations. The multiple headway and velocity difference (MHVD) model is used to depict the motion of ACC vehicles, a...This paper studies the effect of adaptive cruise control (ACC) system on traffic flow by using simulations. The multiple headway and velocity difference (MHVD) model is used to depict the motion of ACC vehicles, and the simulation results are compared with the optimal velocity (OV) model which is used to depict the motion of manual vehicles. Compared the cases between the manual and the ACC vehicle flow, the fundamental diagram can be classified into four regions: I, II, III, IV. In low and high density the flux of the two models is the same; in region II the free flow region of the MHVD model is enlarged, and the flux of the MHVD model is larger than that of the OV model; in region III serious jams occur in the OV model while the ACC system suppresses the jams in the MHVD model and the traffic flow is in order, but the flux of the OV model is larger than that of the MHVD model. Similar phenomena also appeared in mixed traffic flow which consists of manual and ACC vehicles. The results indicate that ACC vehicles have significant effect on traffic flow. The improvement induced by ACC vehicles decreases with the increasing proportion of ACC vehicles.展开更多
Effect of cars with intelligent transportation systems (ITSs) on traffic flow near an on-ramp is investigated by car-following simulations. By numerical simulations, the dependences of flux on the inflow rate are in...Effect of cars with intelligent transportation systems (ITSs) on traffic flow near an on-ramp is investigated by car-following simulations. By numerical simulations, the dependences of flux on the inflow rate are investigated for various proportions of cars with ITSs. The phase diagrams as well as the spatiotemporal diagrams are presented to show different traffic flow states on the main road and the on-ramp. The results show that the saturated flux on the main road increases and the free flow region is enlarged with the increase of the proportion of cars with ITS. Interestingly, the congested regions of the main road disappear completely when the proportion is larger than a critical value. Further investigation shows that the capacity of on-ramp system can be promoted by 13% by using the ITS information, and the saturated flux on the on-ramp can be kept at an appropriate value by adjusting the proportion of cars with ITS.展开更多
To study the dynamics of mixed traffic flow consisting of motorized and non-motorized vehicles, a carfollowing model based on the principle of collision free and cautious driving is proposed. Lateral friction and over...To study the dynamics of mixed traffic flow consisting of motorized and non-motorized vehicles, a carfollowing model based on the principle of collision free and cautious driving is proposed. Lateral friction and overlapping driving are introduced to describe the interactions between motorized vehicles and non-motorized vehicles. By numerical simulations, the flux-density relation, the temporal-spatial dynamics, and the velocity evolution are investigated in detail The results indicate non-motorized vehicles have a significant impact on the motorized vehicle flow and cause the maximum flux to decline by about 13%. Non-motorized vehicles can decrease the motorized vehicle velocity and cause velocity oscillation when the motorized vehicle density is low. Moreover, non-motorized vehicles show a significant damping effect on the oscillating velocity when the density is medium and high, and such an effect weakens as motorized vehicle density increases. The results also stress the necessity for separating motorized vehicles from non-motorized vehicles.展开更多
基金Project partially supported by the National Basic Research Program of China (Grant No 2006-CB705500)the National Natural Science Foundation of China (Grant Nos 70631001 and 70701004)
文摘This paper studies the effect of adaptive cruise control (ACC) system on traffic flow by using simulations. The multiple headway and velocity difference (MHVD) model is used to depict the motion of ACC vehicles, and the simulation results are compared with the optimal velocity (OV) model which is used to depict the motion of manual vehicles. Compared the cases between the manual and the ACC vehicle flow, the fundamental diagram can be classified into four regions: I, II, III, IV. In low and high density the flux of the two models is the same; in region II the free flow region of the MHVD model is enlarged, and the flux of the MHVD model is larger than that of the OV model; in region III serious jams occur in the OV model while the ACC system suppresses the jams in the MHVD model and the traffic flow is in order, but the flux of the OV model is larger than that of the MHVD model. Similar phenomena also appeared in mixed traffic flow which consists of manual and ACC vehicles. The results indicate that ACC vehicles have significant effect on traffic flow. The improvement induced by ACC vehicles decreases with the increasing proportion of ACC vehicles.
基金Project partially supported by the National Basic Research Program of China(Grant No.2006CB705500)the National Natural Science Foundation of China(Grant Nos.70631001 and 70701004)the Innovation Foundation of Science and Technology for Excellent Doctorial Candidate of Beijing Jiaotong University(Grant No.141046522)
文摘Effect of cars with intelligent transportation systems (ITSs) on traffic flow near an on-ramp is investigated by car-following simulations. By numerical simulations, the dependences of flux on the inflow rate are investigated for various proportions of cars with ITSs. The phase diagrams as well as the spatiotemporal diagrams are presented to show different traffic flow states on the main road and the on-ramp. The results show that the saturated flux on the main road increases and the free flow region is enlarged with the increase of the proportion of cars with ITS. Interestingly, the congested regions of the main road disappear completely when the proportion is larger than a critical value. Further investigation shows that the capacity of on-ramp system can be promoted by 13% by using the ITS information, and the saturated flux on the on-ramp can be kept at an appropriate value by adjusting the proportion of cars with ITS.
基金Supported by the National Basic Research Program of China under Grant No.2006CB705500the National Natural Science Foundation of China under Grant Nos.70631001 and 70701004
文摘To study the dynamics of mixed traffic flow consisting of motorized and non-motorized vehicles, a carfollowing model based on the principle of collision free and cautious driving is proposed. Lateral friction and overlapping driving are introduced to describe the interactions between motorized vehicles and non-motorized vehicles. By numerical simulations, the flux-density relation, the temporal-spatial dynamics, and the velocity evolution are investigated in detail The results indicate non-motorized vehicles have a significant impact on the motorized vehicle flow and cause the maximum flux to decline by about 13%. Non-motorized vehicles can decrease the motorized vehicle velocity and cause velocity oscillation when the motorized vehicle density is low. Moreover, non-motorized vehicles show a significant damping effect on the oscillating velocity when the density is medium and high, and such an effect weakens as motorized vehicle density increases. The results also stress the necessity for separating motorized vehicles from non-motorized vehicles.