针对输电线路绝缘子爆裂缺陷检测中缺陷目标小、背景复杂多样导致检测精度低的问题,提出了一种基于YOLOv4改进的检测算法YOLOv4-MP。首先,为减少复杂背景的干扰,在特征提取网络中嵌入Shuffle Attention注意力模块,使模型能够提取到更加...针对输电线路绝缘子爆裂缺陷检测中缺陷目标小、背景复杂多样导致检测精度低的问题,提出了一种基于YOLOv4改进的检测算法YOLOv4-MP。首先,为减少复杂背景的干扰,在特征提取网络中嵌入Shuffle Attention注意力模块,使模型能够提取到更加有效的特征信息。其次,为增强特征融合的效果,在空间金字塔池化中引入带空洞的池化层,能够有效增大感受野。最后,为减少低层信息的丢失,采用Mish函数作为路径增强网络的激活函数。实验结果表明,YOLOv4-MP的平均精度均值(Mean Average Precision,mAP)达到了93.60%,比YOLOv4算法提升了6.37%。与常用的检测算法相比,YOLOv4-MP具有更好的检测性能,对于绝缘子爆裂缺陷检测具有较大应用价值。展开更多
文摘针对输电线路绝缘子爆裂缺陷检测中缺陷目标小、背景复杂多样导致检测精度低的问题,提出了一种基于YOLOv4改进的检测算法YOLOv4-MP。首先,为减少复杂背景的干扰,在特征提取网络中嵌入Shuffle Attention注意力模块,使模型能够提取到更加有效的特征信息。其次,为增强特征融合的效果,在空间金字塔池化中引入带空洞的池化层,能够有效增大感受野。最后,为减少低层信息的丢失,采用Mish函数作为路径增强网络的激活函数。实验结果表明,YOLOv4-MP的平均精度均值(Mean Average Precision,mAP)达到了93.60%,比YOLOv4算法提升了6.37%。与常用的检测算法相比,YOLOv4-MP具有更好的检测性能,对于绝缘子爆裂缺陷检测具有较大应用价值。