图像深度信息获取是机器视觉领域的活跃研究课题之一。将图像深度估计问题归结为模式识别问题,以单目图像深度为模式类,在多尺度下从图像块中提取绝对和相对深度特征,并选择表征上下文关系的DRF(Discriminative Random Field)方法来表...图像深度信息获取是机器视觉领域的活跃研究课题之一。将图像深度估计问题归结为模式识别问题,以单目图像深度为模式类,在多尺度下从图像块中提取绝对和相对深度特征,并选择表征上下文关系的DRF(Discriminative Random Field)方法来表述某图像块的深度和其邻域深度之间的关系,从而构建起基于DRF-MAP(Maximum a posteriori)的单目图像深度估计模型。通过实验,得到了一类单目图像对应的深度图像,从而证明了单目图像深度估计模型对应的改进算法的有效性。展开更多
Semi-supervised dimensionality reduction is an important research area for data classification. A new linear dimensionality reduction approach, global inference preserving projection (GIPP), was proposed to perform ...Semi-supervised dimensionality reduction is an important research area for data classification. A new linear dimensionality reduction approach, global inference preserving projection (GIPP), was proposed to perform classification task in semi-supervised case. GIPP provided a global structure that utilized the underlying discriminative knowledge of unlabeled samples. It used path-based dissimilarity measurement to infer the class label information for unlabeled samples and transformd the diseriminant algorithm into a generalized eigenequation problem. Experimental results demonstrate the effectiveness of the proposed approach.展开更多
文摘图像深度信息获取是机器视觉领域的活跃研究课题之一。将图像深度估计问题归结为模式识别问题,以单目图像深度为模式类,在多尺度下从图像块中提取绝对和相对深度特征,并选择表征上下文关系的DRF(Discriminative Random Field)方法来表述某图像块的深度和其邻域深度之间的关系,从而构建起基于DRF-MAP(Maximum a posteriori)的单目图像深度估计模型。通过实验,得到了一类单目图像对应的深度图像,从而证明了单目图像深度估计模型对应的改进算法的有效性。
基金National Natural Science Foundations of China (No.61072090,60874113)
文摘Semi-supervised dimensionality reduction is an important research area for data classification. A new linear dimensionality reduction approach, global inference preserving projection (GIPP), was proposed to perform classification task in semi-supervised case. GIPP provided a global structure that utilized the underlying discriminative knowledge of unlabeled samples. It used path-based dissimilarity measurement to infer the class label information for unlabeled samples and transformd the diseriminant algorithm into a generalized eigenequation problem. Experimental results demonstrate the effectiveness of the proposed approach.