Information on phase equilibria in the Co-Al based systems which are related to some magnetic and heat resistance materials is important for their microstructural control. Recently, it was proposed with a theoretical ...Information on phase equilibria in the Co-Al based systems which are related to some magnetic and heat resistance materials is important for their microstructural control. Recently, it was proposed with a theoretical calculation on electronic band structure that some Heusler-type alloys Co2XAl (X: Cr and Mn) should be a new type of spinelectronic materials so-called half-metallic ferromagnet. In the case of the Co2CrAl, however, magnetic properties expected from the theoretical work can not been experimentally obtained and the reason has been still unknown. On the other hand, a tunneling magnetoresistance (TMR) effect due to the half-metallic properties was reported in Co2(Cr<sup>0.6 Fe<sup>0.4 )Al alloy, but not the Co2CrAl alloy.In the present paper, it is reported that this discrepancy with the theoretical work in the Co2CrAl alloy is bought about by phase separation between A2 and B2 phases, and that the substitution of Fe for Cr can suppress the precipitation of A2 phase in the B2 phase. Such a phase separation is originally due to the miscibility gap between CoAl and Cr formed in the Co-Al-Cr ternary system as well as that reported by Hao et al. in the Ni-Co-Al-Fe system.展开更多
文摘Information on phase equilibria in the Co-Al based systems which are related to some magnetic and heat resistance materials is important for their microstructural control. Recently, it was proposed with a theoretical calculation on electronic band structure that some Heusler-type alloys Co2XAl (X: Cr and Mn) should be a new type of spinelectronic materials so-called half-metallic ferromagnet. In the case of the Co2CrAl, however, magnetic properties expected from the theoretical work can not been experimentally obtained and the reason has been still unknown. On the other hand, a tunneling magnetoresistance (TMR) effect due to the half-metallic properties was reported in Co2(Cr<sup>0.6 Fe<sup>0.4 )Al alloy, but not the Co2CrAl alloy.In the present paper, it is reported that this discrepancy with the theoretical work in the Co2CrAl alloy is bought about by phase separation between A2 and B2 phases, and that the substitution of Fe for Cr can suppress the precipitation of A2 phase in the B2 phase. Such a phase separation is originally due to the miscibility gap between CoAl and Cr formed in the Co-Al-Cr ternary system as well as that reported by Hao et al. in the Ni-Co-Al-Fe system.