针对现有轻量级模型在嵌入式设备的人脸识别应用中存在识别精度难以提升的问题,提出一种融合人脸对齐关键特征点信息的轻量级新残差网络模型(Lightweight New Residual Network,LNRN).LNRN利用深度残差网络结构能够解决网络退化且避免...针对现有轻量级模型在嵌入式设备的人脸识别应用中存在识别精度难以提升的问题,提出一种融合人脸对齐关键特征点信息的轻量级新残差网络模型(Lightweight New Residual Network,LNRN).LNRN利用深度残差网络结构能够解决网络退化且避免干扰因素影响的优势,结合人脸对齐环节产生的关键特征点信息,对深度残差网络结构进行简化和合理设计,实现对关键特征信息和全局信息的提取.为避免特征提取过程中丢失重要特征信息,该模型在新残差网络中加入结合空间和通道的注意力机制进行辅助.在公开的四个标准人脸数据集上的仿真实验表明,该模型识别速度在接近主流轻量级人脸识别方法的同时,平均识别精度比MobiFace提高了0.6%.展开更多
针对通用目标检测方法YOLO(you only look once)直接应用到人脸检测中存在召回率不够高、定位不够准确的问题,提出一种由密集到稀疏的多尺度并行的网络结构。通过不同尺度的网络检测不同尺寸的人脸,解决召回率不够高的问题,通过平均多...针对通用目标检测方法YOLO(you only look once)直接应用到人脸检测中存在召回率不够高、定位不够准确的问题,提出一种由密集到稀疏的多尺度并行的网络结构。通过不同尺度的网络检测不同尺寸的人脸,解决召回率不够高的问题,通过平均多尺度网络的检测结果解决定位不够准确的问题。引入中心损失函数,减小类内距离,进一步提高分类准确率。实验结果表明,在不同的数据集上,该方法的召回率及定位准确性相对于YOLO有所提高,检测精度接近主流方法的同时检测速度具有明显优势。展开更多
文摘针对现有轻量级模型在嵌入式设备的人脸识别应用中存在识别精度难以提升的问题,提出一种融合人脸对齐关键特征点信息的轻量级新残差网络模型(Lightweight New Residual Network,LNRN).LNRN利用深度残差网络结构能够解决网络退化且避免干扰因素影响的优势,结合人脸对齐环节产生的关键特征点信息,对深度残差网络结构进行简化和合理设计,实现对关键特征信息和全局信息的提取.为避免特征提取过程中丢失重要特征信息,该模型在新残差网络中加入结合空间和通道的注意力机制进行辅助.在公开的四个标准人脸数据集上的仿真实验表明,该模型识别速度在接近主流轻量级人脸识别方法的同时,平均识别精度比MobiFace提高了0.6%.
文摘针对通用目标检测方法YOLO(you only look once)直接应用到人脸检测中存在召回率不够高、定位不够准确的问题,提出一种由密集到稀疏的多尺度并行的网络结构。通过不同尺度的网络检测不同尺寸的人脸,解决召回率不够高的问题,通过平均多尺度网络的检测结果解决定位不够准确的问题。引入中心损失函数,减小类内距离,进一步提高分类准确率。实验结果表明,在不同的数据集上,该方法的召回率及定位准确性相对于YOLO有所提高,检测精度接近主流方法的同时检测速度具有明显优势。