This paper assesses the structure and ability of Local Seismological Gravity Monitoring Network (LSGMN) in China main tectonic zone and China Seismological Gravity Monitoring System (CSGMS) which formed after the proj...This paper assesses the structure and ability of Local Seismological Gravity Monitoring Network (LSGMN) in China main tectonic zone and China Seismological Gravity Monitoring System (CSGMS) which formed after the project of 'China Crustal Movement Observation Network (CCMON)' has been performed. The main conclusions drawn are as follows: ①LSGMN has good monitoring and prediction ability for the earthquake of M_s about 5. But it lacks ability to monitor and predict the strong earthquake of M_s>6 because of the little range of the observation network;②CSGMS has good ability to monitor and predict the earthquake of M_s>7, but the resolving power is not enough for the earthquake magnitude from M_s=6 to M_s=7 because the observation stations are too sparse.展开更多
In Capital Circle area, there are three groups of repeated gravity measurements observed by different institutes using different instruments or methods. The simultaneous adjustment of absolute and relative measurement...In Capital Circle area, there are three groups of repeated gravity measurements observed by different institutes using different instruments or methods. The simultaneous adjustment of absolute and relative measurements and the elimination of systematic error among the relative measurements have been carded out in this paper. Thus an unified temporal gravity change system with absolute reference has been established. On the basis of this, the crustal subsidence effect on gravity, which belongs to non-tectonic factor, is analyzed and the station displacement corrections are carried out, so that the long-wave disturbance is eliminated. So far our following aims are realized: the advantages of the absolute and relative measurement methods are complementary to each other; the contradiction and environment disturbance are eliminated; the amounts of information are enlarged; the sampling interval of time domain is compressed. In a word, the ability of identifying the tectonic activity process is enhanced. The results show that: there are systematic errors between the two groups of relative measurements and within the data of 10 campaigns ; the uneven local crustal subsidence in the southeast of the study area results in a linear rise of gravity value at 10 stations; they can be corrected by the regression analysis. The maps of revised temporal gravity change can obviously and integrally reflect the Ms=5.0 earthquake in Guye on October 6, 1995.展开更多
Water circulation is the main disturbance source against precise gravimetry measurement which is one of the principal means of geodynamic study. Some scientists studied the disturbance of water level changes in lakes ...Water circulation is the main disturbance source against precise gravimetry measurement which is one of the principal means of geodynamic study. Some scientists studied the disturbance of water level changes in lakes andrivers and groundwater activities on gravity field.Taking water circulation as a whole and combining it with thehydrogeological conditions in northwest Yunnan mountainous area and the measured gravity data,this paperstudies the features, connections of water circulation in atmosphere,on surface and under ground and its effecton gravimetric data. The main conclusions are as follows: 1) The water circulation in atmosphere has little directdisturbance on gravity field 1 2 ) The change of lake water level may cause gravitational effect of (10- 20) × 10-8m. s-2 ; 3) In the NW Yunnan, types of the groundwater are various,and its changes are complicated, it isnecessary to study point by point. In general, its disturbance on gravity field in this region is about 10 × 10- 8m. s- 2, less than that in plain area.展开更多
基金The State Natural Science Foundation!(49974019)State Climb Plan
文摘This paper assesses the structure and ability of Local Seismological Gravity Monitoring Network (LSGMN) in China main tectonic zone and China Seismological Gravity Monitoring System (CSGMS) which formed after the project of 'China Crustal Movement Observation Network (CCMON)' has been performed. The main conclusions drawn are as follows: ①LSGMN has good monitoring and prediction ability for the earthquake of M_s about 5. But it lacks ability to monitor and predict the strong earthquake of M_s>6 because of the little range of the observation network;②CSGMS has good ability to monitor and predict the earthquake of M_s>7, but the resolving power is not enough for the earthquake magnitude from M_s=6 to M_s=7 because the observation stations are too sparse.
基金National Natural Science Foundation of China (49974019, 40574020, 10371012).
文摘In Capital Circle area, there are three groups of repeated gravity measurements observed by different institutes using different instruments or methods. The simultaneous adjustment of absolute and relative measurements and the elimination of systematic error among the relative measurements have been carded out in this paper. Thus an unified temporal gravity change system with absolute reference has been established. On the basis of this, the crustal subsidence effect on gravity, which belongs to non-tectonic factor, is analyzed and the station displacement corrections are carried out, so that the long-wave disturbance is eliminated. So far our following aims are realized: the advantages of the absolute and relative measurement methods are complementary to each other; the contradiction and environment disturbance are eliminated; the amounts of information are enlarged; the sampling interval of time domain is compressed. In a word, the ability of identifying the tectonic activity process is enhanced. The results show that: there are systematic errors between the two groups of relative measurements and within the data of 10 campaigns ; the uneven local crustal subsidence in the southeast of the study area results in a linear rise of gravity value at 10 stations; they can be corrected by the regression analysis. The maps of revised temporal gravity change can obviously and integrally reflect the Ms=5.0 earthquake in Guye on October 6, 1995.
文摘Water circulation is the main disturbance source against precise gravimetry measurement which is one of the principal means of geodynamic study. Some scientists studied the disturbance of water level changes in lakes andrivers and groundwater activities on gravity field.Taking water circulation as a whole and combining it with thehydrogeological conditions in northwest Yunnan mountainous area and the measured gravity data,this paperstudies the features, connections of water circulation in atmosphere,on surface and under ground and its effecton gravimetric data. The main conclusions are as follows: 1) The water circulation in atmosphere has little directdisturbance on gravity field 1 2 ) The change of lake water level may cause gravitational effect of (10- 20) × 10-8m. s-2 ; 3) In the NW Yunnan, types of the groundwater are various,and its changes are complicated, it isnecessary to study point by point. In general, its disturbance on gravity field in this region is about 10 × 10- 8m. s- 2, less than that in plain area.