Constituent quark mass model is adopted as a tentative one to study the phase transition between two-flavour quark matter and more stable three-flavour quark matter in the core of supernovae. The result shows that the...Constituent quark mass model is adopted as a tentative one to study the phase transition between two-flavour quark matter and more stable three-flavour quark matter in the core of supernovae. The result shows that the transition has a significant influence on the increasing of the core temperature, the neutrino abundance and the neutrino energies, which contributes to the enhancement of the successful probability of supernova explosion. However, the equilibrium values of these parameters (except the temperature) from the constituent quark mass model in this work are slightly bigger than those obtained from the other model. And we find that the constituent quark mass model is also applicable to describing the transition in the supernova core.展开更多
Improving Salpeter's method, we discuss the effect of superstrong magnetic fields (such as those of magnetars) on thermonuclear reaction rates. These most interesting reactions, including the hydrogen burning by th...Improving Salpeter's method, we discuss the effect of superstrong magnetic fields (such as those of magnetars) on thermonuclear reaction rates. These most interesting reactions, including the hydrogen burning by the CNO cycle and the helium burning by the triple alpha reaction, are investigated as examples on the magnetar surfaces. The obtained result shows that the superstrong magnetic fields can increase the thermonuclear reaction rates by many orders of magnitude. The enhancement may have significant influence for further study research of the magnetars, especially for the x-ray luminosity observation and the evolution of magnetars.展开更多
Based on a new screening Coulomb model, this paper discusses the effect of electron screening on proton capture reaction of 23Mg. The derived result shows that, in some considerable range of stellar temperatures, the ...Based on a new screening Coulomb model, this paper discusses the effect of electron screening on proton capture reaction of 23Mg. The derived result shows that, in some considerable range of stellar temperatures, the effect of electron screening on resonant reaction is prominent; on the non-resonant reaction the effect is obvious only in the low stellar temperatures. The reaction rates of ^23Mg(p,γ) ^24Al would increase 15%-25% due to the fact that the electron screening are considered in typical temperature range of massive mass white dwarfs, and the results undoubtedly affect the nucleosynthesis of some heavier nuclei in massive mass white dwarfs.展开更多
In this paper electron capture on iron group nuclei in crusts of neutron stars in a strong magnetic field is investigated. The results show that the magnetic fields have only a slight effect on electron capture rates ...In this paper electron capture on iron group nuclei in crusts of neutron stars in a strong magnetic field is investigated. The results show that the magnetic fields have only a slight effect on electron capture rates in a range of 10^5 - 10^13g on surfaces of most neutron stars, whereas for some magnetars the magnetic fields range from 10^13 to 10^18 G. The electron capture rates of most iron group nuclei are greatly decreased, reduced by even four orders of magnitude due to the strong magnetic field.展开更多
Based on the new screening model, this paper discusses the influence of superstrong magnetic fields on nuclear energy generation rates on the surface of magnetars. The obtained result shows that the superstrong magnet...Based on the new screening model, this paper discusses the influence of superstrong magnetic fields on nuclear energy generation rates on the surface of magnetars. The obtained result shows that the superstrong magnetic fields can increase the nuclear energy generation rates by many orders of magnitude. The enhancement may have a significant influence for further study of the magnetars, especially for the cooling, the x-ray luminosity observation and the evolution of the magnetars.展开更多
A simple and efficient screening model for studying the effects of superstrong magnetic fields (such as those of magnetars) on thermonuclear reaction rates on magnetar surfaces is proposed in this paper. The most in...A simple and efficient screening model for studying the effects of superstrong magnetic fields (such as those of magnetars) on thermonuclear reaction rates on magnetar surfaces is proposed in this paper. The most interesting thermonuclear reactions, including hydrogen burning by the CNO cycle and helium burning by the triple alpha reaction, are investigated on the surface ofmagnetars. We find that the superstrong magnetic fields can increase the thermonuclear reaction rates by many orders of magnitude. The enhancement may have a dramatic effect on the thermonuclear runaways and bursts on the surfaces of magnetars.展开更多
The current quark mass model is adopted to study the phase transition of two-flavor quark matter to more stable three-flavor quark matter in the whole core of a supernova. It shows that the timescale of the process is...The current quark mass model is adopted to study the phase transition of two-flavor quark matter to more stable three-flavor quark matter in the whole core of a supernova. It shows that the timescale of the process is shorter than 10^-8 seconds, that'the u-and d-quark masses can be neglected completely in this model, and that the temperature and the total neutrino energies in the core after the conversion increase nearly by 40% and 20% on the average compared with former results, respectively. The last result can further enhance the probability of success for a supernova explosion significantly.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10347008)the Scientific Research and Fund of Sichuan Provincial Education Department (Grant No.2006A079)the Science and Technological Foundation of China West Normal University
文摘Constituent quark mass model is adopted as a tentative one to study the phase transition between two-flavour quark matter and more stable three-flavour quark matter in the core of supernovae. The result shows that the transition has a significant influence on the increasing of the core temperature, the neutrino abundance and the neutrino energies, which contributes to the enhancement of the successful probability of supernova explosion. However, the equilibrium values of these parameters (except the temperature) from the constituent quark mass model in this work are slightly bigger than those obtained from the other model. And we find that the constituent quark mass model is also applicable to describing the transition in the supernova core.
基金Supported by the National Natural Science Foundation of China under Grant No 10778719, and the Scientific Research and Fund of Sichuan Provincial Education Department under Grant Nos 2006A079 and 07BZ090.
文摘Improving Salpeter's method, we discuss the effect of superstrong magnetic fields (such as those of magnetars) on thermonuclear reaction rates. These most interesting reactions, including the hydrogen burning by the CNO cycle and the helium burning by the triple alpha reaction, are investigated as examples on the magnetar surfaces. The obtained result shows that the superstrong magnetic fields can increase the thermonuclear reaction rates by many orders of magnitude. The enhancement may have significant influence for further study research of the magnetars, especially for the x-ray luminosity observation and the evolution of magnetars.
基金Project supported by the National Natural Science Foundation of China (Grant No 10347008).
文摘Based on a new screening Coulomb model, this paper discusses the effect of electron screening on proton capture reaction of 23Mg. The derived result shows that, in some considerable range of stellar temperatures, the effect of electron screening on resonant reaction is prominent; on the non-resonant reaction the effect is obvious only in the low stellar temperatures. The reaction rates of ^23Mg(p,γ) ^24Al would increase 15%-25% due to the fact that the electron screening are considered in typical temperature range of massive mass white dwarfs, and the results undoubtedly affect the nucleosynthesis of some heavier nuclei in massive mass white dwarfs.
基金Project supported by the National Natural Science Foundation of China (Grant No 10347008).
文摘In this paper electron capture on iron group nuclei in crusts of neutron stars in a strong magnetic field is investigated. The results show that the magnetic fields have only a slight effect on electron capture rates in a range of 10^5 - 10^13g on surfaces of most neutron stars, whereas for some magnetars the magnetic fields range from 10^13 to 10^18 G. The electron capture rates of most iron group nuclei are greatly decreased, reduced by even four orders of magnitude due to the strong magnetic field.
基金Project supported by the National Natural Science Foundation of China (Grant No 10778719)by Scientific Research and Fund of Sichuan Provincial Education Department of China (Grant Nos 2006A079 and 07BZ090)
文摘Based on the new screening model, this paper discusses the influence of superstrong magnetic fields on nuclear energy generation rates on the surface of magnetars. The obtained result shows that the superstrong magnetic fields can increase the nuclear energy generation rates by many orders of magnitude. The enhancement may have a significant influence for further study of the magnetars, especially for the cooling, the x-ray luminosity observation and the evolution of the magnetars.
基金Project supported by the National Natural Science Foundation of China (Grant No 10778719)the Scientific Research and Fund of Sichuan Provincial Education Department, China (Grant No 2006A079)the Science and Technological Foundation of China West Normal University, China
文摘A simple and efficient screening model for studying the effects of superstrong magnetic fields (such as those of magnetars) on thermonuclear reaction rates on magnetar surfaces is proposed in this paper. The most interesting thermonuclear reactions, including hydrogen burning by the CNO cycle and helium burning by the triple alpha reaction, are investigated on the surface ofmagnetars. We find that the superstrong magnetic fields can increase the thermonuclear reaction rates by many orders of magnitude. The enhancement may have a dramatic effect on the thermonuclear runaways and bursts on the surfaces of magnetars.
基金National Natural Science Foundation of China(10347008)Key Scientific Research Fund of Sichuan Provincial Education Department(2006A079)Science and Technology Foundation of China West Normal University
文摘The current quark mass model is adopted to study the phase transition of two-flavor quark matter to more stable three-flavor quark matter in the whole core of a supernova. It shows that the timescale of the process is shorter than 10^-8 seconds, that'the u-and d-quark masses can be neglected completely in this model, and that the temperature and the total neutrino energies in the core after the conversion increase nearly by 40% and 20% on the average compared with former results, respectively. The last result can further enhance the probability of success for a supernova explosion significantly.