本研究利用WRF-Chem(Weather Research and Forecasting model with online coupled Chemistry)模式对未来中国北方沙尘起沙过程变化进行了模拟预测。为了提高预测结果的准确度,研究综合考虑了气溶胶、温室气体和植被覆盖率等因素对天...本研究利用WRF-Chem(Weather Research and Forecasting model with online coupled Chemistry)模式对未来中国北方沙尘起沙过程变化进行了模拟预测。为了提高预测结果的准确度,研究综合考虑了气溶胶、温室气体和植被覆盖率等因素对天气、气候和起沙过程的影响。预测结果显示,2016~2029年西北部沙尘源地起沙量高于北部沙尘源地,地形和气候的差异是导致两地起沙过程及其季节变化差异的主要原因。两个沙尘源地四季起沙通量呈总体减少而部分季节增加的趋势,西北部沙尘源地起沙通量在春季总体呈上升趋势,在夏、秋和冬季呈下降趋势;北部沙尘源地起沙通量在春、夏和冬季呈下降趋势,在秋季呈微弱上升趋势。两个沙尘源地各季起沙通量的变化趋势由近地面风速主导,植被覆盖率、降水和地面温度等因素对起沙通量的年际波动有着重要影响。展开更多
Based on anomalous diffraction theory and the modified Rayleigh-Debye approximation, a physically realistic model in bridging form is described to approximate the scattering phase function of particles. When compared ...Based on anomalous diffraction theory and the modified Rayleigh-Debye approximation, a physically realistic model in bridging form is described to approximate the scattering phase function of particles. When compared with the exact method, the bridging technique reported here provides a reasonable approximation to the Mie results over a broader range of angles and size parameters, and it demonstrates the advantage of being computationally economic. In addition, the new phase function model can be essentially extended to other shapes and conveniently used in more complicated scattering and emission problems related to the solutions of the radiative transfer equations.展开更多
文摘本研究利用WRF-Chem(Weather Research and Forecasting model with online coupled Chemistry)模式对未来中国北方沙尘起沙过程变化进行了模拟预测。为了提高预测结果的准确度,研究综合考虑了气溶胶、温室气体和植被覆盖率等因素对天气、气候和起沙过程的影响。预测结果显示,2016~2029年西北部沙尘源地起沙量高于北部沙尘源地,地形和气候的差异是导致两地起沙过程及其季节变化差异的主要原因。两个沙尘源地四季起沙通量呈总体减少而部分季节增加的趋势,西北部沙尘源地起沙通量在春季总体呈上升趋势,在夏、秋和冬季呈下降趋势;北部沙尘源地起沙通量在春、夏和冬季呈下降趋势,在秋季呈微弱上升趋势。两个沙尘源地各季起沙通量的变化趋势由近地面风速主导,植被覆盖率、降水和地面温度等因素对起沙通量的年际波动有着重要影响。
基金This research was supported by the National Natural Science Foundation of China under Grant Nos. 40405001 and 40490261by the Climate Change Special Fund No. CCSF2005-3-DH15 from the China Meteorological Administration.
文摘Based on anomalous diffraction theory and the modified Rayleigh-Debye approximation, a physically realistic model in bridging form is described to approximate the scattering phase function of particles. When compared with the exact method, the bridging technique reported here provides a reasonable approximation to the Mie results over a broader range of angles and size parameters, and it demonstrates the advantage of being computationally economic. In addition, the new phase function model can be essentially extended to other shapes and conveniently used in more complicated scattering and emission problems related to the solutions of the radiative transfer equations.