目的探究在304LN不锈钢表面上激光沉积Stellite 6合金过程中的多元素传输机制。方法采用流体体积法VOF(Volume of Fluid),建立气-液两相传热传质激光沉积模型。模型中使用改进VOF法对熔池表面进行追踪,结合多组分传输模型与熔凝杠杆原则...目的探究在304LN不锈钢表面上激光沉积Stellite 6合金过程中的多元素传输机制。方法采用流体体积法VOF(Volume of Fluid),建立气-液两相传热传质激光沉积模型。模型中使用改进VOF法对熔池表面进行追踪,结合多组分传输模型与熔凝杠杆原则(Lever Rule),对异质材料熔覆界面的多元素传输进行模拟,采用扫描电子显微镜(SEM)与能谱仪(EDS)观察组织结构和元素分布,对比模拟结果分析多组沉积层宏观形貌和元素分布特征。结果沉积过程中,熔池的流动与材料导热对温度的传输起着重要作用,前端对流不断地将已熔化的基材金属运输至熔池中部,后端对流则将卷积的Fe元素和Co元素进一步混合。最终沉积层的宏观形貌平均误差为2.67%,主要元素Fe、Co、Cr的质量分数误差分别为0.64%、1.27%、0.31%。结论Fe元素浓度整体区域分布相对均匀,但在沉积层底部,Fe元素浓度迅速升高,Co元素浓度随沉积深度加深逐渐降低,Cr元素在沉积层中部富集的分布特性。该优化后的模型可以准确模拟异质合金沉积过程中的温度场、流场与质量传输过程。展开更多
为实现碳纤维增强复合材料的高质高效切割,采用水导激光加工技术对CFRP进行微槽加工,通过正交实验法、单因素实验法研究了激光功率、扫描速度和扫描路径重叠率对热影响区宽度和材料去除率的影响规律,并以此为目标进行了优化。结果表明:...为实现碳纤维增强复合材料的高质高效切割,采用水导激光加工技术对CFRP进行微槽加工,通过正交实验法、单因素实验法研究了激光功率、扫描速度和扫描路径重叠率对热影响区宽度和材料去除率的影响规律,并以此为目标进行了优化。结果表明:激光功率、扫描路径重叠率对热影响区宽度和材料去除率的影响显著;当激光功率35 W、扫描速度4 mm/s和扫描路径重叠率40%时,热影响区宽度为184.484μm,材料去除率为0.068 mm ^(3)/s,能获得较小的热影响区宽度和较高的加工效率。展开更多
文摘目的探究在304LN不锈钢表面上激光沉积Stellite 6合金过程中的多元素传输机制。方法采用流体体积法VOF(Volume of Fluid),建立气-液两相传热传质激光沉积模型。模型中使用改进VOF法对熔池表面进行追踪,结合多组分传输模型与熔凝杠杆原则(Lever Rule),对异质材料熔覆界面的多元素传输进行模拟,采用扫描电子显微镜(SEM)与能谱仪(EDS)观察组织结构和元素分布,对比模拟结果分析多组沉积层宏观形貌和元素分布特征。结果沉积过程中,熔池的流动与材料导热对温度的传输起着重要作用,前端对流不断地将已熔化的基材金属运输至熔池中部,后端对流则将卷积的Fe元素和Co元素进一步混合。最终沉积层的宏观形貌平均误差为2.67%,主要元素Fe、Co、Cr的质量分数误差分别为0.64%、1.27%、0.31%。结论Fe元素浓度整体区域分布相对均匀,但在沉积层底部,Fe元素浓度迅速升高,Co元素浓度随沉积深度加深逐渐降低,Cr元素在沉积层中部富集的分布特性。该优化后的模型可以准确模拟异质合金沉积过程中的温度场、流场与质量传输过程。
文摘为实现碳纤维增强复合材料的高质高效切割,采用水导激光加工技术对CFRP进行微槽加工,通过正交实验法、单因素实验法研究了激光功率、扫描速度和扫描路径重叠率对热影响区宽度和材料去除率的影响规律,并以此为目标进行了优化。结果表明:激光功率、扫描路径重叠率对热影响区宽度和材料去除率的影响显著;当激光功率35 W、扫描速度4 mm/s和扫描路径重叠率40%时,热影响区宽度为184.484μm,材料去除率为0.068 mm ^(3)/s,能获得较小的热影响区宽度和较高的加工效率。