An X-band magnetically insulated transmission line oscillator (MILO) is designed and investigated numerically and experimentally for the first time. The X-band MILO is optimized in detail with KARAT code. In simulat...An X-band magnetically insulated transmission line oscillator (MILO) is designed and investigated numerically and experimentally for the first time. The X-band MILO is optimized in detail with KARAT code. In simulation, the X-band MILO, driven by a 720 kV, 53 kA electron beam, comes to a nonlinear steady state in 4.0 ns. High-power microwaves (HPM) of TEM mode is generated with an average power of 4.1 GW, a frequency of 9.3 GHz, and power conversion efficiency of 10.870 in durations of 0-40 ns. The device is fabricated according to the simulation results. In experiments, when the voltage is 400 kV and the current is 50 kA, the radiated microwave power reaches about 110 MW and the dominating frequency is 9.7GHz. Because the surfaces of the cathode end and the beam dump are destroyed, the diode voltage cannot increase continuously. However, when the diode voltage is 400 kV, the average power output is obtained to be 700 MW in simulation. The impedance of the device is clearly smaller than the simulation prediction. Moreover, the duration of the microwave pulse is obviously shorter than that of the current pulse. The experimental results are greatly different from the simulation predictions. The preliminary analyses show that the generations of the anode plasma, the cathode flare and the anode flare are the essential cause for the remarkable deviation of the experimental results from the simulation predictions.展开更多
We present an improved structure of the tapered magnetically insulated transmission fine oscillator (MILO). Simulation results show that this structure can obtain more microwave power with higher efficiency. Studies...We present an improved structure of the tapered magnetically insulated transmission fine oscillator (MILO). Simulation results show that this structure can obtain more microwave power with higher efficiency. Studies indicate that the distance between the load support legs and the last vane can affect the operation characteristics of this device. In the experiments, we obtain microwave with peak power of 2 GW, frequency of 2.63 GHz, and mode TMol. The beam to microwave power efficiency is 11%.展开更多
A new configuration of an axially-extracted vircator with three resonant cavities is put forward and optimized by simulation with the PIC code. The output power of over 1 GW is obtained at around 4.1 GHz in the experi...A new configuration of an axially-extracted vircator with three resonant cavities is put forward and optimized by simulation with the PIC code. The output power of over 1 GW is obtained at around 4.1 GHz in the experiment, in agreement well with the PIC simulation results. The beam to wave power conversion efficiency is more than 6.6%.展开更多
基金supported by the Chinese National Natural Science Foundation (Grant No 10675168)Innovation Fund of Graduate School of the National University of Defense Technology of China
文摘An X-band magnetically insulated transmission line oscillator (MILO) is designed and investigated numerically and experimentally for the first time. The X-band MILO is optimized in detail with KARAT code. In simulation, the X-band MILO, driven by a 720 kV, 53 kA electron beam, comes to a nonlinear steady state in 4.0 ns. High-power microwaves (HPM) of TEM mode is generated with an average power of 4.1 GW, a frequency of 9.3 GHz, and power conversion efficiency of 10.870 in durations of 0-40 ns. The device is fabricated according to the simulation results. In experiments, when the voltage is 400 kV and the current is 50 kA, the radiated microwave power reaches about 110 MW and the dominating frequency is 9.7GHz. Because the surfaces of the cathode end and the beam dump are destroyed, the diode voltage cannot increase continuously. However, when the diode voltage is 400 kV, the average power output is obtained to be 700 MW in simulation. The impedance of the device is clearly smaller than the simulation prediction. Moreover, the duration of the microwave pulse is obviously shorter than that of the current pulse. The experimental results are greatly different from the simulation predictions. The preliminary analyses show that the generations of the anode plasma, the cathode flare and the anode flare are the essential cause for the remarkable deviation of the experimental results from the simulation predictions.
文摘We present an improved structure of the tapered magnetically insulated transmission fine oscillator (MILO). Simulation results show that this structure can obtain more microwave power with higher efficiency. Studies indicate that the distance between the load support legs and the last vane can affect the operation characteristics of this device. In the experiments, we obtain microwave with peak power of 2 GW, frequency of 2.63 GHz, and mode TMol. The beam to microwave power efficiency is 11%.
文摘A new configuration of an axially-extracted vircator with three resonant cavities is put forward and optimized by simulation with the PIC code. The output power of over 1 GW is obtained at around 4.1 GHz in the experiment, in agreement well with the PIC simulation results. The beam to wave power conversion efficiency is more than 6.6%.