The location of U-turn bays is an important consideration in indirect driveway left-turn treatments.In order to improve the performance of right-turns followed by U-turns(RTUTs),this study evaluates the impacts of t...The location of U-turn bays is an important consideration in indirect driveway left-turn treatments.In order to improve the performance of right-turns followed by U-turns(RTUTs),this study evaluates the impacts of the separation distances between driveway exits and downstream U-turn locations on the safety and operational performance of vehicles making RTUTs.Crash data are investigated at 179 selected roadway segments,and travel time data are measured using video cameras at 29 locations in the state of Florida,USA.Crash rate models and travel time models are developed based on data collected in the field.It is found that the separation distance between driveway exits and downstream U-turn locations significantly impacts the safety and operational performance of vehicles making right turns followed by U-turns.Based on the research results,the minimum and optimal separation distances between driveways and U-turn locations under different roadway conditions are determined to facilitate driver use of RTUTs.The results of this study can be used for future intersection improvement projects in China.展开更多
In order to study the critical load position that causes cavities beneath the continuously reinforced concrete pavement( CRCP) slab under vehicle loading, the elliptical load is translated into the square load based...In order to study the critical load position that causes cavities beneath the continuously reinforced concrete pavement( CRCP) slab under vehicle loading, the elliptical load is translated into the square load based on the equivalence principle.The CRCP slab is analyzed to determine the cavity position beneath the slab under vehicle loading. The influences of cavity size on the CRCP slab's stress and vertical displacement are investigated. The study results showthat the formation of the cavity is unavoidable under traffic loading, and the cavity is located at the edge of the longitudinal crack and the slab corner.The cavity size exerts an obvious influence on the largest horizontal tensile stress and vertical displacement. The slab corner is the critical load position of the CRCP slab. The results can be used to assist the design of CRCP in avoiding cavities beneath slabs subject to vehicle loading.展开更多
文摘The location of U-turn bays is an important consideration in indirect driveway left-turn treatments.In order to improve the performance of right-turns followed by U-turns(RTUTs),this study evaluates the impacts of the separation distances between driveway exits and downstream U-turn locations on the safety and operational performance of vehicles making RTUTs.Crash data are investigated at 179 selected roadway segments,and travel time data are measured using video cameras at 29 locations in the state of Florida,USA.Crash rate models and travel time models are developed based on data collected in the field.It is found that the separation distance between driveway exits and downstream U-turn locations significantly impacts the safety and operational performance of vehicles making right turns followed by U-turns.Based on the research results,the minimum and optimal separation distances between driveways and U-turn locations under different roadway conditions are determined to facilitate driver use of RTUTs.The results of this study can be used for future intersection improvement projects in China.
基金The Science Foundation of Ministry of Transport of the People's Republic of China(No.200731822301-7)
文摘In order to study the critical load position that causes cavities beneath the continuously reinforced concrete pavement( CRCP) slab under vehicle loading, the elliptical load is translated into the square load based on the equivalence principle.The CRCP slab is analyzed to determine the cavity position beneath the slab under vehicle loading. The influences of cavity size on the CRCP slab's stress and vertical displacement are investigated. The study results showthat the formation of the cavity is unavoidable under traffic loading, and the cavity is located at the edge of the longitudinal crack and the slab corner.The cavity size exerts an obvious influence on the largest horizontal tensile stress and vertical displacement. The slab corner is the critical load position of the CRCP slab. The results can be used to assist the design of CRCP in avoiding cavities beneath slabs subject to vehicle loading.