为完善基于先验知识的标记增强方法对于情绪信息的捕捉,提出一种基于语义规则增强的蒙古语情感分布学习方法(semantic rule enhancement based Mongolian emotion distribution learning, SRE-MEDL)。在情感轮和情感词典的基础上,引入...为完善基于先验知识的标记增强方法对于情绪信息的捕捉,提出一种基于语义规则增强的蒙古语情感分布学习方法(semantic rule enhancement based Mongolian emotion distribution learning, SRE-MEDL)。在情感轮和情感词典的基础上,引入程度词典和否定词典,得到各种情感词组合,以此制定相应的语义规则计算情感词权重,将其融入到标记增强中。在情感分布学习中融入从情感分布空间到实例特征空间的反向重构映射来弥补正向映射引起的原始信息丢失问题。对比实验结果显示,在蒙古语和中英文常用数据集上,SRE-MEDL方法在标记增强任务和情感分布学习中的表现均优于现有方法。展开更多
文摘为完善基于先验知识的标记增强方法对于情绪信息的捕捉,提出一种基于语义规则增强的蒙古语情感分布学习方法(semantic rule enhancement based Mongolian emotion distribution learning, SRE-MEDL)。在情感轮和情感词典的基础上,引入程度词典和否定词典,得到各种情感词组合,以此制定相应的语义规则计算情感词权重,将其融入到标记增强中。在情感分布学习中融入从情感分布空间到实例特征空间的反向重构映射来弥补正向映射引起的原始信息丢失问题。对比实验结果显示,在蒙古语和中英文常用数据集上,SRE-MEDL方法在标记增强任务和情感分布学习中的表现均优于现有方法。
文摘随着中国金融市场的高水平开放,中国应对外部输入性风险的压力将进一步上升。探索中国金融市场所面临的输入性风险动态变化并构建预警体系具有重要意义。本文运用时变参数向量自回归模型(TVP-VAR)和深度神经网络模型SCInet(Sample Convolution and Interaction Network),对我国金融市场输入性风险进行测度和前瞻性预警。研究发现:(1)TVP-VAR模型能有效识别极端风险事件发生前的风险积累,极端风险事件时期输入性风险水平会显著提高;(2)通过与主要发达国家(或地区)和发展中国家的输入性风险对比,发现发达经济体的输入性风险波动幅度较小,通过研究各国(地区)对我国的输入性风险,发现香港地区对我国内地的风险输入水平最高,以美国为主的发达国家和以印度为主的发展中国家也向我国输送了大量风险;(3)相比于其他机器学习和神经网络模型,SCInet模型具有最优的预警性能,在输入性风险异常波动前能提前预警。本研究或可为个人规避风险、企业可持续发展、国家金融稳定提供参考和帮助。