With a pair of antennas spaced apart, an airborne passive location system measures phase differences of emitting signals. Regarded as cyclic ambiguities, the moduli of the measurements traditionally are resolved by ad...With a pair of antennas spaced apart, an airborne passive location system measures phase differences of emitting signals. Regarded as cyclic ambiguities, the moduli of the measurements traditionally are resolved by adding more antenna elements. This paper models the cyclic ambiguity as a component of the system state, of which the observability is analyzed and compared to that of the bear- ings-only passive location system. It is shown that the necessary and sufficient observability condition for the bearings-only passive location system is only the necessary observability condition for the passive location system with phase difference measurements, and that when the system state is observable, the cyclic ambiguities can be estimated by accumulating the phase difference measurements, thereby making the observer able to locate the emitter with high-precision.展开更多
卡尔曼滤波因其良好的性能广泛应用于卫星姿态确定中。经典的扩展卡尔曼滤波(EKF)算法在估计姿态坐标系中表示估计误差矢量,由于没有考虑到估计姿态坐标系与真实姿态坐标系之间存在偏差,从而导致姿态估计精度下降。针对这个问题,Andrle ...卡尔曼滤波因其良好的性能广泛应用于卫星姿态确定中。经典的扩展卡尔曼滤波(EKF)算法在估计姿态坐标系中表示估计误差矢量,由于没有考虑到估计姿态坐标系与真实姿态坐标系之间存在偏差,从而导致姿态估计精度下降。针对这个问题,Andrle M S通过几何变换引入误差一致性表示,在此基础上,提出了几何扩展卡尔曼滤波(GEKF)算法,将姿态误差四元数和陀螺漂移增量通过几何变换进行一致性表示,解决了估计误差矢量表示不一致的问题。本文介绍了误差一致性表示的原理,并将GEKF算法应用于含常值漂移与时间相关漂移的陀螺模型中,仿真实验表明:GEKF算法比MEKF对陀螺漂移的估计更加精确,在滤波精度上取得了明显改善。展开更多
文摘With a pair of antennas spaced apart, an airborne passive location system measures phase differences of emitting signals. Regarded as cyclic ambiguities, the moduli of the measurements traditionally are resolved by adding more antenna elements. This paper models the cyclic ambiguity as a component of the system state, of which the observability is analyzed and compared to that of the bear- ings-only passive location system. It is shown that the necessary and sufficient observability condition for the bearings-only passive location system is only the necessary observability condition for the passive location system with phase difference measurements, and that when the system state is observable, the cyclic ambiguities can be estimated by accumulating the phase difference measurements, thereby making the observer able to locate the emitter with high-precision.
文摘卡尔曼滤波因其良好的性能广泛应用于卫星姿态确定中。经典的扩展卡尔曼滤波(EKF)算法在估计姿态坐标系中表示估计误差矢量,由于没有考虑到估计姿态坐标系与真实姿态坐标系之间存在偏差,从而导致姿态估计精度下降。针对这个问题,Andrle M S通过几何变换引入误差一致性表示,在此基础上,提出了几何扩展卡尔曼滤波(GEKF)算法,将姿态误差四元数和陀螺漂移增量通过几何变换进行一致性表示,解决了估计误差矢量表示不一致的问题。本文介绍了误差一致性表示的原理,并将GEKF算法应用于含常值漂移与时间相关漂移的陀螺模型中,仿真实验表明:GEKF算法比MEKF对陀螺漂移的估计更加精确,在滤波精度上取得了明显改善。