期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于VMD-SSA-LSTM考虑刀具磨损的数控铣床切削功率预测模型研究
1
作者 王秋莲 欧桂雄 +3 位作者 徐雪娇 刘锦荣 马国红 邓红标 《中国机械工程》 EI CAS CSCD 北大核心 2024年第6期1052-1063,共12页
传统的切削过程功率获取需要基于复杂的切削功率模型且很少考虑刀具磨损的影响,针对此设计了一种基于变分模态分解(VMD)、麻雀搜索算法(SSA)、长短时记忆(LSTM)神经网络的考虑刀具磨损的数控铣床切削功率预测模型,该模型无需解构数控铣... 传统的切削过程功率获取需要基于复杂的切削功率模型且很少考虑刀具磨损的影响,针对此设计了一种基于变分模态分解(VMD)、麻雀搜索算法(SSA)、长短时记忆(LSTM)神经网络的考虑刀具磨损的数控铣床切削功率预测模型,该模型无需解构数控铣床运行过程的能耗机理,基于一次性的历史实验数据即可实现数控铣床切削过程功率的高精度预测。首先,采用人工智能机器视觉技术对刀具磨损图片进行分析处理,获取刀具磨损图像的数字化特征,从而得到刀具最大磨损量;然后,建立基于VMD-SSA-LSTM考虑刀具磨损的数控铣床切削功率预测模型,利用VMD对数控铣床运行数据进行分解,采用SSA算法对LSTM神经网络超参数进行寻优,并将分解出的铣床运行数据分量输入到LSTM神经网络中,接着将每个分量的预测值相加,得到切削功率预测值;最后以面铣加工为例,将所提出的预测模型与BP神经网络、LSTM神经网络和传统模型进行对比分析,验证了所提模型的有效性和优越性。 展开更多
关键词 切削过程功率 刀具磨损 麻雀搜索算法 长短时记忆神经网络 变分模态分解 计算机视觉技术
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部